1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
//! Core types and abstractions used in Texcraft.
//!
//!

use std::fmt::Write;

/// Trait satisfied by font formats (like .tfm files).
pub trait FontFormat: Sized {
    const DEFAULT_FILE_EXTENSION: &'static str;
    type Error: std::error::Error + 'static;

    /// Parse binary data into a font.
    fn parse(b: &[u8]) -> Result<Self, Self::Error>;
}

/// Scaled numbers.
///
/// This is a fixed-width numeric type used in throughout TeX.
/// This type is defined and described in part 7 "arithmetic with scaled
/// dimensions" starting at TeX.2021.99.
///
/// This numeric type has 15 bits for the integer part,
/// 16 bits for the fractional part, and a single signed bit.
/// The inner value is the number multiplied by 2^16.
#[derive(Default, PartialEq, Eq, Debug, Copy, Clone, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Scaled(pub i32);

impl Scaled {
    /// Representation of the number 0 as a [Scaled].
    pub const ZERO: Scaled = Scaled(0);

    /// Representation of the number 1 as a [Scaled].
    pub const ONE: Scaled = Scaled(1 << 16);

    /// Representation of the number 2 as a [Scaled].
    pub const TWO: Scaled = Scaled(1 << 17);

    /// Maximum possible dimension in TeX, which is (2^30-1)/2^16.
    ///
    /// This is _not_ the maximum size of the Rust scaled number type, which is (2^31-1)/2^16.
    ///
    /// Defined in TeX.2021.421.
    pub const MAX_DIMEN: Scaled = Scaled((1 << 30) - 1);

    /// Create a scaled number corresponding the provided positive integer.
    ///
    /// Scaled numbers are in the range `(-2^14, 2^14)`.
    /// If _i_ is outside this range an overflow error is returned.
    pub fn from_integer(i: i32) -> Result<Scaled, OverflowError> {
        if i >= (1 << 14) || i <= -(1 << 14) {
            Err(OverflowError {})
        } else {
            Ok(Scaled(Scaled::ONE.0 * i))
        }
    }

    /// Creates a scaled number from a decimal fraction.
    ///
    /// TeX.2021.102.
    pub fn from_decimal_digits(digits: &[u8]) -> Scaled {
        let mut a = 0;
        for d in digits.iter().rev() {
            a = (a + (*d as i32) * Scaled::TWO.0) / 10
        }
        Scaled((a + 1) / 2)
    }

    /// Creates a scaled number from the provided components.
    ///
    /// TeX.2021.458
    pub fn new(
        integer_part: i32,
        fractional_part: Scaled,
        scaled_unit: ScaledUnit,
    ) -> Result<Scaled, OverflowError> {
        if scaled_unit == ScaledUnit::ScaledPoint {
            return if integer_part > Scaled::MAX_DIMEN.0 {
                Err(OverflowError)
            } else {
                // For sp units, the fractional part is silently dropped.
                Ok(Scaled(integer_part))
            };
        }
        let (n, d) = scaled_unit.conversion_fraction();
        // xn_over_d, but with integer arguments
        let (Scaled(i), Scaled(remainder)) = Scaled(integer_part).xn_over_d(n, d)?;
        let f =
            fractional_part.nx_plus_y(n, Scaled::from_integer(remainder).expect("remainder<d<=7200<2^13, so a valid scaled number"))
            .expect("fractional_part<2^16, remainder<2^16*d, so nx_plus_y<2^16(n+d). Each (n,d) makes this <2^30")
            / d;
        let integer_part = Scaled::from_integer(i + f.integer_part())?;
        Ok(integer_part + f.fractional_part())
    }

    /// Calculates the integer division _xn_/_d_ and remainder, where _x_ is this scaled number
    /// and _n_ and _d_ are integers in the range `[0,2^16]`.
    ///
    /// This function appears in TeX.2021.107. Knuth is working with 32-bit integers
    /// and so calculating this number is tricky without overflowing. E.g. _xn_ may
    /// be larger than `2^32-1` even if the final result is in range.
    /// TeX has an algorithm that calculates the exact value without overflowing,
    /// in the case when the final result is in range.
    ///
    /// Our implementation simply uses 64-bit integers.
    pub fn xn_over_d(&self, n: i32, d: i32) -> Result<(Scaled, Scaled), OverflowError> {
        debug_assert!(n <= 0o200000);
        debug_assert!(d <= 0o200000);
        let mut b: i64 = self.0.into();
        b *= n as i64; // can't overflow because |b|<=2^31 and |n|<=2^16
        let remainder: i32 = (b % (d as i64)).try_into().expect("d<=2^16 so b%d<2^16");
        b /= d as i64;
        if b < -(Scaled::MAX_DIMEN.0 as i64) || b > Scaled::MAX_DIMEN.0 as i64 {
            return Err(OverflowError {});
        }
        let b: i32 = b.try_into().expect("b in (-2^30, +2^30");
        Ok((Scaled(b), Scaled(remainder)))
    }

    /// TeX.2021.105
    pub fn nx_plus_y(self, mut n: i32, y: Scaled) -> Result<Scaled, OverflowError> {
        let max_answer = Scaled::MAX_DIMEN;
        if n == 0 {
            return Ok(y);
        }
        let mut x = self;
        if n < 0 {
            n = -n;
            x = -x;
        }
        if x <= (max_answer - y) / n && -x <= (max_answer + y) / n {
            Ok(x * n + y)
        } else {
            Err(OverflowError {})
        }
    }

    pub fn integer_part(self) -> i32 {
        self.0 / Scaled::ONE.0
    }

    pub fn fractional_part(self) -> Scaled {
        self % Scaled::ONE.0
    }

    pub fn abs(self) -> Scaled {
        Scaled(self.0.abs())
    }

    pub fn wrapping_add(self, rhs: Scaled) -> Self {
        Scaled(self.0.wrapping_add(rhs.0))
    }
    pub fn checked_add(self, rhs: Scaled) -> Option<Self> {
        Some(Scaled(self.0.checked_add(rhs.0)?))
    }
    pub fn wrapping_mul(self, rhs: i32) -> Self {
        Scaled(self.0.wrapping_mul(rhs))
    }
    pub fn checked_mul(self, rhs: i32) -> Option<Self> {
        // TODO: need to really probe the overflow behavior here!
        // I actually think it's correct, but we should add tests.
        self.nx_plus_y(rhs, Scaled::ZERO).ok()
    }
    pub fn checked_div(self, rhs: i32) -> Option<Self> {
        Some(Scaled(self.0.checked_div(rhs)?))
    }
    // TeX.2021.103 print_scaled
    pub fn display_no_units(self) -> impl std::fmt::Display {
        struct D {
            s: Scaled,
        }
        impl std::fmt::Display for D {
            fn fmt(&self, fm: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
                write!(fm, "{}.", self.s.integer_part())?;
                // Fractional part
                let mut f = self.s.abs().fractional_part() * 10 + Scaled(5);
                let mut delta = Scaled(10);
                loop {
                    if delta > Scaled::ONE {
                        // round the last digit
                        f = f + Scaled(0o100000 - 50000);
                    }
                    fm.write_char(
                        char::from_digit(f.integer_part().try_into().unwrap(), 10).unwrap(),
                    )?;
                    f = f.fractional_part() * 10;
                    delta = delta * 10;
                    if f <= delta {
                        break;
                    }
                }
                Ok(())
            }
        }
        D { s: self }
    }
}

#[derive(Debug)]
pub struct OverflowError;

impl std::fmt::Display for Scaled {
    fn fmt(&self, fm: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // Integer part
        write!(fm, "{}", self.display_no_units())?;
        // Units
        write!(fm, "pt")?;
        Ok(())
    }
}

impl std::ops::Add<Scaled> for Scaled {
    type Output = Scaled;
    fn add(self, rhs: Scaled) -> Self::Output {
        Scaled(self.0 + rhs.0)
    }
}
impl std::ops::Sub<Scaled> for Scaled {
    type Output = Scaled;
    fn sub(self, rhs: Scaled) -> Self::Output {
        Scaled(self.0 - rhs.0)
    }
}

impl std::ops::Mul<i32> for Scaled {
    type Output = Scaled;
    fn mul(self, rhs: i32) -> Self::Output {
        Scaled(self.0 * rhs)
    }
}

impl std::ops::Div<i32> for Scaled {
    type Output = Scaled;
    fn div(self, rhs: i32) -> Self::Output {
        Scaled(self.0 / rhs)
    }
}

impl std::ops::Rem<i32> for Scaled {
    type Output = Scaled;
    fn rem(self, rhs: i32) -> Self::Output {
        Scaled(self.0 % rhs)
    }
}

impl std::ops::Neg for Scaled {
    type Output = Scaled;
    fn neg(self) -> Self::Output {
        Scaled(-self.0)
    }
}

/// Unit used to define a scaled integer
///
/// Defined in TeX.2021.458 and chapter 10 of the TeX book.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum ScaledUnit {
    Point,
    Pica,
    Inch,
    BigPoint,
    Centimeter,
    Millimeter,
    DidotPoint,
    Cicero,
    ScaledPoint,
}

impl ScaledUnit {
    /// Parses a unit from a two character abbreviation.
    ///
    /// E.g., `"pc"` is parsed to [`ScaledUnit::Pica`].
    /// These are abreviations are defined in TeX.2021.458 and chapter 10 of the TeX book.
    pub fn parse(s: &str) -> Option<Self> {
        use ScaledUnit::*;
        Some(match s {
            "pt" => Point,
            "pc" => Pica,
            "in" => Inch,
            "bp" => BigPoint,
            "cm" => Centimeter,
            "mm" => Millimeter,
            "dd" => DidotPoint,
            "cc" => Cicero,
            "sp" => ScaledPoint,
            _ => return None,
        })
    }

    /// Returns the fraction needed to convert to/from this unit to points.
    ///
    /// The return value is of the form (_n_, _d_).
    /// If a scaled number represents _x_in these units (e.g. y [`ScaledUnit::Pica`]),
    ///     then it is _y_=_nx_/_d_ points.
    ///
    /// Defined in TeX.2021.458.
    pub fn conversion_fraction(&self) -> (i32, i32) {
        use ScaledUnit::*;
        match self {
            Point => (1, 1),
            Pica => (12, 1),
            Inch => (7227, 100),
            BigPoint => (7227, 7200),
            Centimeter => (7227, 254),
            Millimeter => (7227, 2540),
            DidotPoint => (1238, 1157),
            Cicero => (14856, 1157),
            ScaledPoint => (1, 1 << 16),
        }
    }
}

/// Glue.
///
/// In Knuth's TeX this struct is not passed around directly; instead
/// Knuth essentially uses `std::rc::Rc<Glue>`.
/// This optimization is based on the fact that very few distinct glue
/// values appear in a document, and that the pointer takes up less
/// space than the struct.
/// We might consider performing such an optimization.
///
/// Described in TeX.2021.150.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Default)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Glue {
    pub width: Scaled,
    pub stretch: Scaled,
    pub stretch_order: GlueOrder,
    pub shrink: Scaled,
    pub shrink_order: GlueOrder,
}

impl std::ops::Mul<i32> for Glue {
    type Output = Glue;
    fn mul(self, rhs: i32) -> Self::Output {
        Glue {
            width: self.width * rhs,
            stretch: self.stretch * rhs,
            stretch_order: self.stretch_order,
            shrink: self.shrink * rhs,
            shrink_order: self.shrink_order,
        }
    }
}

impl Glue {
    /// TeX.2021.1239
    pub fn wrapping_add(self, rhs: Glue) -> Self {
        use std::cmp::Ordering::*;
        Glue {
            width: self.width.wrapping_add(rhs.width),
            stretch: match self.stretch_order.cmp(&rhs.stretch_order) {
                Less => rhs.stretch,
                Equal => self.stretch.wrapping_add(rhs.stretch),
                Greater => self.stretch,
            },
            stretch_order: self.stretch_order.max(rhs.stretch_order),
            shrink: match self.shrink_order.cmp(&rhs.shrink_order) {
                Less => rhs.shrink,
                Equal => self.shrink.wrapping_add(rhs.shrink),
                Greater => self.shrink,
            },
            shrink_order: self.shrink_order.max(rhs.shrink_order),
        }
    }
    pub fn checked_add(self, rhs: Glue) -> Option<Self> {
        use std::cmp::Ordering::*;
        Some(Glue {
            width: self.width.checked_add(rhs.width)?,
            stretch: match self.stretch_order.cmp(&rhs.stretch_order) {
                Less => rhs.stretch,
                Equal => self.stretch.checked_add(rhs.stretch)?,
                Greater => self.stretch,
            },
            stretch_order: self.stretch_order.max(rhs.stretch_order),
            shrink: match self.shrink_order.cmp(&rhs.shrink_order) {
                Less => rhs.shrink,
                Equal => self.shrink.checked_add(rhs.shrink)?,
                Greater => self.shrink,
            },
            shrink_order: self.shrink_order.max(rhs.shrink_order),
        })
    }
    pub fn checked_mul(self, rhs: i32) -> Option<Self> {
        Some(Glue {
            width: self.width.checked_mul(rhs)?,
            stretch: self.stretch.checked_mul(rhs)?,
            stretch_order: self.stretch_order,
            shrink: self.shrink.checked_mul(rhs)?,
            shrink_order: self.shrink_order,
        })
    }
    pub fn wrapping_mul(self, rhs: i32) -> Self {
        Glue {
            width: self.width.wrapping_mul(rhs),
            stretch: self.stretch.wrapping_mul(rhs),
            stretch_order: self.stretch_order,
            shrink: self.shrink.wrapping_mul(rhs),
            shrink_order: self.shrink_order,
        }
    }
    pub fn checked_div(self, rhs: i32) -> Option<Self> {
        Some(Glue {
            width: self.width.checked_div(rhs)?,
            stretch: self.stretch.checked_div(rhs)?,
            stretch_order: self.stretch_order,
            shrink: self.shrink.checked_div(rhs)?,
            shrink_order: self.shrink_order,
        })
    }
}

impl std::fmt::Display for Glue {
    // TeX.2021.177 print_spec with s="pt"
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", self.width)?;
        if self.stretch != Scaled::ZERO {
            write!(f, " plus ")?;
            write!(f, "{}", self.stretch.display_no_units())?;
            write!(f, "{}", self.stretch_order)?;
        }
        if self.shrink != Scaled::ZERO {
            write!(f, " minus ")?;
            write!(f, "{}", self.shrink.display_no_units())?;
            write!(f, "{}", self.shrink_order)?;
        }
        Ok(())
    }
}

/// Order of infinity of a glue stretch or shrink.
///
/// When setting a list of boxes, TeX stretches or shrinks glue boxes.
/// In some cases it is desirable that TeX only stretches some subset of the
/// glue boxes.
/// For example, when setting centered text, TeX only stretches the two glue
/// boxes at each end of the list and leaves all other glue intact.
///
/// To achieve this, each glue stretch or shrink has an order of infinity.
/// If a list contains glue of some order (e.g. [GlueOrder::Fil]),
/// then glues of a lower order (e.g. [GlueOrder::Normal]) are not stretched
/// or shrunk.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Default, PartialOrd, Ord)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum GlueOrder {
    #[default]
    Normal,
    Fil,
    Fill,
    Filll,
}

impl GlueOrder {
    /// Parses an infinite glue order from a keyword.
    pub fn parse(s: &str) -> Option<Self> {
        use GlueOrder::*;
        Some(match s {
            "fil" => Fil,
            "fill" => Fill,
            "filll" => Filll,
            _ => return None,
        })
    }
    pub fn inf_str(&self) -> Option<&'static str> {
        use GlueOrder::*;
        match self {
            Normal => None,
            Fil => Some("fil"),
            Fill => Some("fill"),
            Filll => Some("filll"),
        }
    }
    /// Returns the next highest glue order.
    pub fn next(&self) -> Option<Self> {
        use GlueOrder::*;
        match self {
            Normal => Some(Fil),
            Fil => Some(Fill),
            Fill => Some(Filll),
            Filll => None,
        }
    }
}

impl std::fmt::Display for GlueOrder {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", self.inf_str().unwrap_or("pt"))
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn type_sizes() {
        assert_eq!(16, std::mem::size_of::<Glue>());
    }
}