1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
//! Spell checking using Levenshtein distance
//!
//! This module contains a simple spell check facilty in the form a [find_close_words]
//! function. This function accepts a word and a dictionary, which is a list of valid words.
//! It find the words in the dictionary that are closest to the original world, where "closest"
//! is defined using
//! [Levenshtein distance](https://en.wikipedia.org/wiki/Levenshtein_distance).
//!
//! The result of the search is a list of [WordDiffs](WordDiff).
//! This data structure describes how the initial word can be changed to the dictionary word using a combination
//! of keep, add, subtract and modify [DiffOps](DiffOp).
//!
//! ## Implementation notes
//!
//! The Levenshtein distance calculation is implemented using dynamic programming and has the smallest possible
//! space and time complexity (both O(n^2)). Note the space complexity could be O(n) if we only
//! cared about the minimal distance between the strings, but we want to return the full [WordDiff].
//! We use only O(n) space during the calculation, but each [WordDiff] is also O(n), so we end up with O(n^2).
//!
//! To see why we can only use O(n) space,
//! let `n = a.len()` and `m = b.len()` and consider the `n x m `matrix `X` where `X[i][j]` is the comparison
//! between `a[:i]` and `b[:j]`.
//! The notation `a[:i]` means all characters in `a` between 0 and `i` inclusive.
//! The solution is `X[n][m]`. The recursive relation is:
//!
//! ```text
//! X[i][j] = {
//!     X[i-1][j-1] if a[i] == b[j]  // append the (keep the character a[i]) op
//!                                  //  to the best WordDiff for (a[:i-1], b[:j-1])
//!     1 + min (
//!         X[i-1][j],    // append the (subtract the character a[i]) op
//!                       //  to the best WordDiff for (a[:i-1], b[j])
//!         X[i][j-1],    // append the (add the character b[j]) op
//!                       //  to the best WordDiff for (a[:i], b[j-1])
//!         X[i-1][j-1],  // append the (modify the character a[i] to b[j]) op
//!                       //  to the best WordDiff for (a[:i-1], b[:j-1])
//!     ) otherwise
//! }
//! ```
//!
//! We calculate the matrix by iterating over the `j` variable first and then the `i` variable:
//! ```
//! # let a = Vec::<i64>::new();
//! # let b = Vec::<i64>::new();
//! for j in 0..(b.len() + 1) {
//!     for i in 0..(a.len() + 1) {
//!         // calculate X[i][j] using X[i-1][j], X[i][j-1] and X[i-1][j-1]
//!     }
//! }
//! ```
//!
//! With this calculation order, we observe that `X[i][j]` only depends on the last `m+2` elements of `X` that have
//! been calculated. Specifically,
//!
//! - `X[i-1][j]` was calculated in the previous iteration of the `i` loop, so `1` iteration before.
//! - `X[i][j-1]` was calculated in the previous iteration of the `j` loop with the same `i` index, so `m+1` iterations before
//!        because the `i` variable takes `m+1` values.
//! - `X[i-1][j-1]` was calculated `m+2` iterations before.
//!
//! So, we don't need to store the full `X` matrix at all: we just need to store the last `m+2` elements that were calculated.
//! We use a circular buffer of size `m+2` to do this.

use crate::collections::circularbuffer::CircularBuffer;
use colored::*;
use std::ops::Index;

/// Find words in the provided dictionary that are close to the search word.
///
/// The return value is an ordered list corresponding to every word in the dictionary, with
/// the closest matches first.
pub fn find_close_words(dictionary: Vec<String>, word: &str) -> Vec<WordDiff> {
    // TODO: accept a generic iterator
    let size_hint = dictionary.len();
    //size_hint() {
    //   (s, None) => s,
    //   (_, Some(s)) => s,
    //};
    let mut comparisons = Vec::with_capacity(size_hint);
    for valid_word in dictionary {
        let comparison = levenshtein_distance(word, valid_word.as_str()); // word);
        comparisons.push(comparison);
    }
    comparisons.sort_by(|a, b| a.distance.cmp(&b.distance));
    comparisons
}

fn levenshtein_distance(a: &str, b: &str) -> WordDiff {
    let a: Vec<char> = a.chars().collect();
    let b: Vec<char> = b.chars().collect();

    let m = b.len();
    let mut c = CircularBuffer::new(m + 2);
    let idx_modify = m + 1;
    let idx_subtract = m;
    let idx_add = 0;

    // This is comparing two empty strings - i.e., a[:0] and b[:0]
    c.push(WordDiff {
        distance: 0,
        ops: Vec::with_capacity(std::cmp::max(a.len(), b.len())),
    });

    for b_j in &b {
        // Here we are comparing an empty a string (i.e., a[:0]) with b[:j+1].
        // There is only one possible action: append (add b[j]) to the diff for b[:j]
        let cmp = c.clone_to_front(idx_add);
        cmp.ops.push(DiffOp::Add(*b_j));
        cmp.distance += 1;
    }

    for a_i in &a {
        // Here we are comparing a[:i+1] with an empty b string (i.e., b[:0])
        // There is only one possible action: append (subtract a[i]) to the diff for a[:i]
        //let i_subtract = (idx_to_set + 1) % c.len();
        let cmp = c.clone_to_front(idx_subtract);
        cmp.ops.push(DiffOp::Subtract(*a_i));
        cmp.distance += 1;

        for b_j in &b {
            // Here we are comparing a[:i+1] with a b[:j+1]
            let (idx_to_clone, diff, distance_delta) = if a_i == b_j {
                (idx_modify, DiffOp::Keep(*a_i), 0)
            } else {
                let cost_modify = c.index(idx_modify).distance;
                let cost_add = c.index(idx_add).distance;
                let cost_subtract = c.index(idx_subtract).distance;
                if cost_modify <= std::cmp::min(cost_subtract, cost_add) {
                    (idx_modify, DiffOp::Modify(*a_i, *b_j), 1)
                } else if cost_subtract <= std::cmp::min(cost_modify, cost_add) {
                    (idx_subtract, DiffOp::Subtract(*a_i), 1)
                } else {
                    (idx_add, DiffOp::Add(*b_j), 1)
                }
            };

            let cmp = c.clone_to_front(idx_to_clone);
            cmp.ops.push(diff);
            cmp.distance += distance_delta;
        }
    }
    c.index(0).clone()
}

#[derive(Debug, Eq, PartialEq, Copy, Clone)]
pub enum DiffOp {
    Keep(char),
    Add(char),
    Subtract(char),
    Modify(char, char),
}

impl DiffOp {
    #[cfg(test)]
    fn invert(&self) -> DiffOp {
        match self {
            DiffOp::Keep(c) => DiffOp::Keep(*c),
            DiffOp::Add(c) => DiffOp::Subtract(*c),
            DiffOp::Subtract(c) => DiffOp::Add(*c),
            DiffOp::Modify(a, b) => DiffOp::Modify(*b, *a),
        }
    }

    #[cfg(test)]
    fn distance(&self) -> usize {
        match self {
            DiffOp::Keep(_) => 0,
            DiffOp::Add(_) => 1,
            DiffOp::Subtract(_) => 1,
            DiffOp::Modify(_, _) => 1,
        }
    }

    fn left(&self) -> Option<char> {
        match self {
            DiffOp::Keep(c) => Some(*c),
            DiffOp::Add(_) => None,
            DiffOp::Subtract(c) => Some(*c),
            DiffOp::Modify(c, _) => Some(*c),
        }
    }

    fn right(&self) -> Option<char> {
        match self {
            DiffOp::Keep(c) => Some(*c),
            DiffOp::Add(c) => Some(*c),
            DiffOp::Subtract(_) => None,
            DiffOp::Modify(_, c) => Some(*c),
        }
    }

    fn colored(&self) -> colored::ColoredString {
        match self {
            DiffOp::Keep(c) => c.to_string().normal(),
            DiffOp::Add(c) => c.to_string().on_green(), //.bold(),
            DiffOp::Subtract(c) => c.to_string().on_red(),
            DiffOp::Modify(_, c) => c.to_string().on_yellow(), //.bold(),
        }
    }
}

#[derive(Debug, Eq, PartialEq)]
pub struct WordDiff {
    distance: usize,
    ops: Vec<DiffOp>,
}

impl WordDiff {
    pub fn left(&self) -> String {
        self.ops.iter().filter_map(DiffOp::left).collect()
    }

    pub fn right(&self) -> String {
        self.ops.iter().filter_map(DiffOp::right).collect()
    }

    pub fn colored(&self) -> String {
        let mut s = String::default();
        for diff in self.ops.iter() {
            s = format!["{}{}", s, diff.colored()];
        }
        s
    }
}

impl Clone for WordDiff {
    fn clone(&self) -> Self {
        let mut cmp = WordDiff {
            distance: self.distance,
            ops: Vec::with_capacity(self.ops.capacity()),
        };
        cmp.ops.clone_from(&self.ops);
        cmp
    }

    fn clone_from(&mut self, source: &Self) {
        self.distance = source.distance;
        self.ops.clear();
        for diff in source.ops.iter() {
            self.ops.push(*diff);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    macro_rules! levenshtein_tests {
        ($( ($name: ident, $a: expr, $b: expr, $i: expr),)+) => {
            $(
            #[test]
            fn $name() {
                let mut cmp = WordDiff {
                    distance: 0,
                    ops: $i,
                };
                for diff in cmp.ops.iter() {
                    cmp.distance += diff.distance();
                }
                assert_eq![levenshtein_distance($a, $b), cmp];

                let mut inverse_diffs = Vec::new();
                for diff in cmp.ops.iter() {
                    inverse_diffs.push(diff.invert());
                }
                let cmp = WordDiff {
                    distance: cmp.distance,
                    ops: inverse_diffs,
                };
                assert_eq![levenshtein_distance($b, $a), cmp];
            }
            )+
        };
    }

    levenshtein_tests![
        (case_1, "", "", Vec::<DiffOp>::new()),
        (case_2, "a", "", vec![DiffOp::Subtract('a')]),
        (case_3, "a", "a", vec![DiffOp::Keep('a')]),
        (case_4, "a", "b", vec![DiffOp::Modify('a', 'b')]),
        (
            case_5,
            "aa",
            "a",
            vec![DiffOp::Subtract('a'), DiffOp::Keep('a')]
        ),
        (
            case_6,
            "aa",
            "ab",
            vec![DiffOp::Keep('a'), DiffOp::Modify('a', 'b')]
        ),
        (
            case_7,
            "abb",
            "acbb",
            vec![
                DiffOp::Keep('a'),
                DiffOp::Add('c'),
                DiffOp::Keep('b'),
                DiffOp::Keep('b'),
            ]
        ),
        (
            case_8,
            "aabb",
            "abb",
            vec![
                DiffOp::Subtract('a'),
                DiffOp::Keep('a'),
                DiffOp::Keep('b'),
                DiffOp::Keep('b'),
            ]
        ),
        (
            case_9,
            "james",
            "laura",
            vec![
                DiffOp::Modify('j', 'l'),
                DiffOp::Keep('a'),
                DiffOp::Modify('m', 'u'),
                DiffOp::Modify('e', 'r'),
                DiffOp::Modify('s', 'a'),
            ]
        ),
        (
            case_10,
            "ab12345e",
            "a12345de",
            vec![
                DiffOp::Keep('a'),
                DiffOp::Subtract('b'),
                DiffOp::Keep('1'),
                DiffOp::Keep('2'),
                DiffOp::Keep('3'),
                DiffOp::Keep('4'),
                DiffOp::Keep('5'),
                DiffOp::Add('d'),
                DiffOp::Keep('e'),
            ]
        ),
    ];

    #[test]
    fn find_close_words_test() {
        let dictionary = vec!["james".to_string(), "laura".to_string(), "mint".to_string()];
        let word = "janes";
        let result = find_close_words(dictionary, &word);

        assert_eq![result[0].right(), "james"];
        assert_eq![result[1].right(), "laura"];
        assert_eq![result[2].right(), "mint"];
        assert_eq![result.len(), 3];
    }
}