1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
//! Texlang commands API
//!
//! # Texcraft commands API
//!
//! One of the most important parts of any TeX engine is the primitives that it provides.
//! This documentation describes the *Texcraft commands API*,
//! which is the mechanism by which TeX engines add new primitives.
//!
//! A note on terminology: *commands* can be categorized into primitives,
//! which are implemented in the TeX engine, and user defined macros,
//! which are created in specific TeX documents using primitives like `\def`.
//! We often use the word command and primitive interchangeably here because in the context
//! of implementing TeX engines they’re basically synonymous.
//! A TeX engine could theoretically provide a native user defined macro...but it’s unlikely.
//!
//! ## Expansion vs execution
//!
//! Expansion and execution commands seem similar because they both optionally
//! read input tokens and then make changes to the VM.
//! However the differences are pretty significant in practice:
//!
//! | | Expansion | Execution
//! |------------------------------------------|-----------|-----------
//! Can read tokens from the input stream? | Yes | Yes
//! Can add tokens to the input stream> | Yes | It’s possible, but the API discourages it.[^futurelet]
//! Can make changes to the state? | No | Yes
//! Is evaluated when tokens are only being expanded, like in `\edef` | Yes | No
//!
//!
//! [^futurelet]: `\futurelet` is an example of an execution command that does this.
//!
use crate::texmacro;
use crate::token;
use crate::types;
use crate::variable;
use crate::vm;
use once_cell::sync::OnceCell;
use std::num;
use std::rc;
use std::sync;
pub(crate) mod map;
pub use crate::error::Error;
pub use map::Map;
pub type Result<T> = std::result::Result<T, Box<Error>>;
/// The Rust type of expansion primitive functions.
pub type ExpansionFn<S> = fn(token: token::Token, input: &mut vm::ExpansionInput<S>) -> Result<()>;
/// The Rust type of execution primitive functions.
pub type ExecutionFn<S> = fn(token: token::Token, input: &mut vm::ExecutionInput<S>) -> Result<()>;
/// A TeX command.
pub enum Command<S> {
/// An expansion primitive that is implemented in the engine.
///
/// Examples: `\the`, `\ifnum`.
Expansion(ExpansionFn<S>, Option<Tag>),
/// A user defined macro.
///
/// Examples: `\newcommand` and `\include` in LaTeX.
Macro(rc::Rc<texmacro::Macro>),
/// A non-expansion primitive that performs operations on the state.
///
/// Examples: `\def`, `\par`.
Execution(ExecutionFn<S>, Option<Tag>),
/// A command that is used to reference a variable, like a parameter or a register.
///
/// Such a command is *resolved* to get the variable using the function pointer it holds.
///
/// Examples: `\count`, `\year`.
Variable(rc::Rc<variable::Command<S>>),
/// A command that aliases a character token.
///
/// Depending on the context in which this command appears it may behave like a
/// character (when typesetting) or like an unexpandable command (when parsing integers).
/// Created using `\let\cmd=<character>`.
CharacterTokenAlias(token::Value),
/// A command that references a character.
///
/// These commands are generally created using `\countdef`.
/// In the main inner loop they result in a character being typeset.
/// In other contexts they are interpreted as numbers.
/// In Plain TeX, `\countdef 255` is used as a more efficient version of `\def{255 }`.
Character(char),
/// A command that references a math character.
///
/// These commands are generally created using `\mathchardef`.
MathCharacter(types::MathCode),
}
impl<S> std::fmt::Display for Command<S> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Command::Expansion(_, _) => write![f, "an expansion command"],
Command::Macro(_) => write![f, "a user-defined macro"],
Command::Execution(_, _) => write![f, "an execution command"],
Command::Variable(_) => write![f, "a variable command"],
Command::CharacterTokenAlias(_) => write![f, "a character token alias"],
Command::Character(_) => write![f, "a character command"],
Command::MathCharacter(_) => write![f, "a math character command"],
}
}
}
impl<S> Command<S> {
/// Gets the tag associated to this command, or [None] if the command has no tag.
pub fn tag(&self) -> Option<Tag> {
match self {
Command::Expansion(_, tag) => *tag,
Command::Execution(_, tag) => *tag,
Command::Macro(_)
| Command::Variable(_)
| Command::CharacterTokenAlias(_)
| Command::Character(_)
| Command::MathCharacter(_) => None,
}
}
}
/// A built-in command. This is a command provided at VM initialization.
///
/// This struct is simply a combination of a [Command] and a documentation string for the command.
/// It is used when providing the built-in commands for a VM.
pub struct BuiltIn<S> {
cmd: Command<S>,
doc: Option<&'static str>,
}
impl<S> BuiltIn<S> {
/// Create a new expansion built-in command.
pub fn new_expansion(t: ExpansionFn<S>) -> BuiltIn<S> {
t.into()
}
/// Create a new expansion built-in command.
pub fn new_execution(t: ExecutionFn<S>) -> BuiltIn<S> {
t.into()
}
/// Create a new variable built-in command.
pub fn new_variable(cmd: variable::Command<S>) -> BuiltIn<S> {
Command::Variable(rc::Rc::new(cmd)).into()
}
/// Set the tag for this built-in command.
pub fn with_tag(mut self, tag: Tag) -> BuiltIn<S> {
match &mut self.cmd {
Command::Expansion(_, t) => *t = Some(tag),
Command::Execution(_, t) => *t = Some(tag),
Command::Macro(_)
| Command::Variable(_)
| Command::CharacterTokenAlias(_)
| Command::Character(_)
| Command::MathCharacter(_) => {
panic!("cannot add a tag to this type of command")
}
}
self
}
// Set the doc for this built-in command.
pub fn with_doc(mut self, doc: &'static str) -> BuiltIn<S> {
self.doc = Some(doc);
self
}
pub fn cmd(&self) -> &Command<S> {
&self.cmd
}
pub fn doc(&self) -> Option<&'static str> {
self.doc
}
}
// We need to implement Clone manually as the derived implementation requires S to be Clone.
impl<S> Clone for Command<S> {
fn clone(&self) -> Self {
match self {
Command::Expansion(e, t) => Command::Expansion::<S>(*e, *t),
Command::Macro(m) => Command::Macro(m.clone()),
Command::Execution(e, t) => Command::Execution(*e, *t),
Command::Variable(v) => Command::Variable(v.clone()),
Command::CharacterTokenAlias(tv) => Command::CharacterTokenAlias(*tv),
Command::Character(c) => Command::Character(*c),
Command::MathCharacter(c) => Command::MathCharacter(*c),
}
}
}
// We need to implement Clone manually as the derived implementation requires S to be Clone.
impl<S> Clone for BuiltIn<S> {
fn clone(&self) -> Self {
Self {
cmd: self.cmd.clone(),
doc: self.doc,
}
}
}
impl<S> From<ExpansionFn<S>> for BuiltIn<S> {
fn from(cmd: ExpansionFn<S>) -> Self {
Command::Expansion(cmd, None).into()
}
}
impl<S> From<rc::Rc<texmacro::Macro>> for BuiltIn<S> {
fn from(cmd: rc::Rc<texmacro::Macro>) -> Self {
Command::Macro(cmd).into()
}
}
impl<S> From<ExecutionFn<S>> for BuiltIn<S> {
fn from(cmd: ExecutionFn<S>) -> Self {
Command::Execution(cmd, None).into()
}
}
impl<S> From<variable::Command<S>> for BuiltIn<S> {
fn from(cmd: variable::Command<S>) -> Self {
Command::Variable(rc::Rc::new(cmd)).into()
}
}
impl<S> From<Command<S>> for BuiltIn<S> {
fn from(cmd: Command<S>) -> Self {
BuiltIn { cmd, doc: None }
}
}
/// A tag is a piece of metadata that is optionally attached to a command.
///
/// Tags are used to implement certain TeX language semantics.
/// An example is TeX conditionals.
/// When a TeX conditional statement evaluates to false, the `\if` command must scan
/// the input stream until it finds either an `\else` or `\fi` command.
/// (The tokens scanned in this process are in the true branch of the conditional,
/// and must thus be discarded.)
/// Tags are the mechanism by which the scanning algorithm can
/// determine if a token corresponds to an `\else` of `\fi` command.
/// Concretely, both `\else` of `\fi` command have unique tags associated to them.
/// When scanning the stream,
/// if a token is a command token then the tag for the associated command is
/// compared to the known tags for `\else` and `\fi`.
/// If the tags match, the true branch is finished.
///
/// In general, TeX commands interface with the VM in two ways.
/// The first most common way is when the main VM loop or expansion loop encounters a command.
/// The loop invokes the command's associated Rust function.
/// One can think of the Rust function as providing the behavior of the command in this context.
///
/// The second way is when a different command, like a conditional command, performs some operation
/// that is dependent on the commands it reads out of the input stream.
/// In this context the commands in the input stream provide behavior using tags.
/// The `\else` command having the specific else tag results in the conditional branch processing completing.
///
/// Note that the same tag can be used for multiple commands,
/// but each command can only have one tag.
///
/// ## Implementation details
///
/// Tags are non-zero 32 bit integers.
/// The first tag created has value 1, the second tag has value 2, and so on.
/// A global mutex is used to store the next tag value.
/// Tags have the property that `Option<Tag>` takes up 4 bytes in memory.
#[derive(PartialEq, Eq, Clone, Copy, Debug, PartialOrd, Ord, Hash)]
pub struct Tag(num::NonZeroU32);
static NEXT_TAG_VALUE: sync::Mutex<u32> = sync::Mutex::new(1);
impl Tag {
/// Creates a new unique tag.
///
/// ```
/// # use texlang::command::Tag;
/// let tag_1 = Tag::new();
/// let tag_2 = Tag::new();
/// assert_ne!(tag_1, tag_2);
/// ```
// We suppress the clippy warning because creating a new tag is a global operation and
// shouldn't be done without explicit intention.
#[allow(clippy::new_without_default)]
pub fn new() -> Tag {
let mut n = NEXT_TAG_VALUE.lock().unwrap();
let tag = Tag(num::NonZeroU32::new(*n).unwrap());
*n = n.checked_add(1).unwrap();
tag
}
}
/// A static tag enables creating a tag in a static variable.
///
/// ```
/// # use texlang::command::StaticTag;
/// static TAG: StaticTag = StaticTag::new();
///
/// let first_get = TAG.get();
/// let second_get = TAG.get();
/// assert_eq!(first_get, second_get);
/// ```
pub struct StaticTag(OnceCell<Tag>);
impl StaticTag {
/// Create a new static tag.
pub const fn new() -> StaticTag {
StaticTag(OnceCell::new())
}
/// Get the actual [Tag] out of this [StaticTag].
/// Repeated calls to this function return the same tag.
///
/// This is not a trivial getter.
/// The [Tag] is lazily constructed so even subsequent calls to this getter must do some work to check if the [Tag]
/// exists or not.
/// For very hot code paths it is advised to cache the return value somewhere, for example in a relevant command's state.
pub fn get(&self) -> Tag {
*self.0.get_or_init(Tag::new)
}
}
/// A primitive key uniquely identifies a primitive.
///
/// If two commands have the same key, they are the same primitive (expansion, execution, or variable primitive)
/// The function returns [None] if the command is not a primitive (a macro or a token alias).
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub(crate) enum PrimitiveKey {
Execution(usize, Option<Tag>),
Expansion(usize, Option<Tag>),
Variable(variable::CommandKey),
}
impl PrimitiveKey {
pub(crate) fn new<S>(command: &Command<S>) -> Option<Self> {
match command {
Command::Expansion(f, tag) => Some(PrimitiveKey::Expansion(*f as usize, *tag)),
Command::Execution(f, tag) => Some(PrimitiveKey::Execution(*f as usize, *tag)),
Command::Variable(v) => Some(PrimitiveKey::Variable(v.key())),
Command::Macro(_)
| Command::CharacterTokenAlias(_)
| Command::Character(_)
| Command::MathCharacter(_) => None,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn func_size() {
assert_eq!(std::mem::size_of::<Command<()>>(), 16);
}
static STATIC_TAG_1: StaticTag = StaticTag::new();
static STATIC_TAG_2: StaticTag = StaticTag::new();
#[test]
fn tag() {
let tag_1_val_1 = STATIC_TAG_1.get();
let tag_2_val_1 = STATIC_TAG_2.get();
let other_tag_1 = Tag::new();
let tag_1_val_2 = STATIC_TAG_1.get();
let tag_2_val_2 = STATIC_TAG_2.get();
let other_tag_2 = Tag::new();
assert_eq!(tag_1_val_1, tag_1_val_2);
assert_eq!(tag_2_val_1, tag_2_val_2);
assert_ne!(tag_1_val_1, tag_2_val_2);
assert_ne!(tag_1_val_1, other_tag_1);
assert_ne!(tag_1_val_1, other_tag_2);
}
#[test]
fn tag_size() {
assert_eq!(std::mem::size_of::<Option<Tag>>(), 4);
}
}