1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
//! Texlang variables API
//!
//! The documentation website contains
//! [a tutorial specifically about Texlang's variables API](https://texcraft.dev/texlang/07-variables.html).
//! See that documentation for an overview of the API.
//! As usual, the documentation here is meant as reference.
use crate::command;
use crate::error;
use crate::parse::OptionalEquals;
use crate::token;
use crate::traits::*;
use crate::types;
use crate::vm;
use std::borrow::Cow;
use std::collections::HashMap;
use std::fmt::Debug;
use std::hash::{Hash, Hasher};
use texcraft_stdext::collections::groupingmap;
/// Function signature for a variable's immutable getter.
///
/// In Texcraft all [Variable]s are built from an immutable getter and a mutable getter.
/// This type alias just defines the signature of immutable getters.
/// The first argument is the state, and the second argument is the index of the variable.
pub type RefFn<S, T> = fn(state: &S, index: Index) -> &T;
/// Function signature for a variable's mutable getters.
///
/// In Texcraft all [Variable]s are built from an immutable getter and a mutable getter.
/// This type alias just defines the signature of mutable getters.
/// The first argument is the state, and the second argument is the index of the variable.
pub type MutRefFn<S, T> = fn(state: &mut S, index: Index) -> &mut T;
/// Index of a variable within an array.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Default)]
pub struct Index(pub usize);
impl From<usize> for Index {
fn from(value: usize) -> Self {
Index(value)
}
}
/// Specification for how the index of an array variable is determined.
///
/// Obtaining a variable from a command involves determining the variable's [Index].
/// This index is ultimately passed into the variable's getters to get a reference or mutable reference
/// to the underlying Rust value.
pub enum IndexResolver<S> {
/// A static index, provided in the enum variant.
///
/// This resolver is used for commands that point to a specific entry in a array.
/// For example, after executing `\countdef\A 30`, the `\A` control sequence points
/// at the count register with index 30.
/// The command backing `\A` uses a static resolver with index 30.
Static(Index),
/// A dynamic index that is determined by reading the input token stream.
///
/// For example, in `\count 4` the index of `4` is determined by parsing a number
/// from the input token stream.
Dynamic(fn(token::Token, &mut vm::ExpandedStream<S>) -> Result<Index, Box<error::Error>>),
}
impl<S> IndexResolver<S> {
/// Determine the index of a variable using the input token stream.
fn resolve(
&self,
token: token::Token,
input: &mut vm::ExpandedStream<S>,
) -> Result<Index, Box<error::Error>> {
match self {
IndexResolver::Static(addr) => Ok(*addr),
IndexResolver::Dynamic(f) => f(token, input),
}
}
}
/// A TeX variable command.
///
/// Variable commands are _resolved_ to obtain a [Variable].
///
/// A command consists of three parts.
///
/// The first two parts are an immutable getter (of type [RefFn])
/// and a mutable getter (of type [MutRefFn]).
/// Both of these getters accept a reference to the state (where the variable's value lives)
/// and an [Index].
/// The index can be used by the getters to return different values in memory.
/// For example, if the getters read from an array, the index may be just the index in the array.
/// This mechanism allows users of Texlang to write one pair of getters that can be used in many variables.
///
/// The third part of a command is an [IndexResolver] that is used to determine the aforementioned index
/// of a variable at runtime.
/// The process of resolving a command involves determining the [Index] and returning a [Variable] type,
/// which under the hood is just the two getters and this index.
pub struct Command<S> {
getters: Getters<S>,
index_resolver: Option<IndexResolver<S>>,
}
impl<S> Command<S> {
/// Create a new variable command.
pub fn new_singleton<T: SupportedType>(
ref_fn: RefFn<S, T>,
ref_mut_fn: MutRefFn<S, T>,
) -> Command<S> {
SupportedType::new_command(ref_fn, ref_mut_fn, None)
}
/// Create a new variable command.
pub fn new_array<T: SupportedType>(
ref_fn: RefFn<S, T>,
ref_mut_fn: MutRefFn<S, T>,
index_resolver: IndexResolver<S>,
) -> Command<S> {
SupportedType::new_command(ref_fn, ref_mut_fn, Some(index_resolver))
}
/// Create a new getter provider.
///
/// A getter provider is a variable command that is not intended to be invoked directly -
/// in fact, the variable command will panic the program if it is invoked.
/// Instead the provider is included in a VM's initial commands so that
/// the VM has a reference to the getters inside the command.
/// If a variable with the same getters is subsequently inserted into the commands map
/// (for example, by a `\countdef` type command), the VM can still serialize that
/// variable using the getters provided here.
pub fn new_getter_provider<T: SupportedType>(
ref_fn: RefFn<S, T>,
ref_mut_fn: MutRefFn<S, T>,
) -> Command<S> {
SupportedType::new_command(
ref_fn,
ref_mut_fn,
Some(IndexResolver::Dynamic(|_, _| panic!())),
)
}
/// Create a command that points to a specific element in the array referenced by this command.
pub(crate) fn new_array_element(&self, index: Index) -> Self {
Self {
getters: self.getters.clone(),
index_resolver: Some(IndexResolver::Static(index)),
}
}
}
impl<S: TexlangState> Command<S> {
/// Resolve the command to obtain a [Variable].
pub fn resolve(
&self,
token: token::Token,
input: &mut vm::ExpandedStream<S>,
) -> Result<Variable<S>, Box<error::Error>> {
let index = match &self.index_resolver {
None => Index(0),
Some(index_resolver) => match index_resolver.resolve(token, input) {
Ok(index) => index,
Err(err) => {
return Err(error::Error::new_propagated(
input.vm(),
error::PropagationContext::VariableIndex,
token,
err,
))
}
},
};
Ok(new_variable(&self.getters, index))
}
}
impl<S> Command<S> {
pub(crate) fn key(&self) -> CommandKey {
let getters_key = self.getters.key();
match &self.index_resolver {
None => CommandKey::Singleton(getters_key),
Some(index_resolver) => match index_resolver {
IndexResolver::Static(a) => CommandKey::ArrayStatic(getters_key, *a),
IndexResolver::Dynamic(f) => CommandKey::ArrayDynamic(getters_key, *f as usize),
},
}
}
}
impl<S: TexlangState> Command<S> {
/// Resolve the command to a variable and return the value of the variable.
pub fn value<'a>(
&self,
token: token::Token,
input: &'a mut vm::ExpandedStream<S>,
) -> Result<ValueRef<'a>, Box<error::Error>> {
Ok(self.resolve(token, input)?.value(input.state()))
}
/// Resolve the command to a variable and set the value of the variable using the following tokens in the input stream.
///
/// This function is used in TeX code like `\variable = 3`.
/// In this case `\variable` is a command which resolves to a variable without consuming any more input.
/// The variable is populated using the input `= 3` that follows.
pub(crate) fn set_value_using_input(
&self,
token: token::Token,
input: &mut vm::ExecutionInput<S>,
scope: groupingmap::Scope,
) -> Result<(), Box<error::Error>> {
match self
.resolve(token, input.as_mut())?
.set_value_using_input(input, scope)
{
Ok(()) => Ok(()),
Err(err) => Err(error::Error::new_propagated(
input.vm(),
error::PropagationContext::VariableAssignment,
token,
err,
)),
}
}
}
/// A key that uniquely identifies commands. If two commands have the same command key, they are the same command.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub(crate) enum CommandKey {
Singleton(GettersKey),
ArrayStatic(GettersKey, Index),
ArrayDynamic(GettersKey, usize),
}
impl CommandKey {
pub(crate) fn getter_key(&self) -> GettersKey {
match self {
CommandKey::Singleton(k) => *k,
CommandKey::ArrayStatic(k, _) => *k,
CommandKey::ArrayDynamic(k, _) => *k,
}
}
}
/// Immutable reference to the value of a variable.
pub enum ValueRef<'a> {
Int(&'a i32),
CatCode(&'a types::CatCode),
MathCode(&'a types::MathCode),
TokenList(&'a [token::Token]),
}
/// TeX variable of any type.
///
/// A variable uniquely identifies a Rust value in the state, like an `i32`.
/// Operations on this value (like reading or setting the value) can be done in two ways:
///
/// 1. (Easy, less flexible) Use the methods directly on this type like [Variable::value]
/// to read the value.
/// These methods are really ergonomic.
/// The problem with the value method specifically is that the result
/// is a reference which keeps the borrow of the state alive.
/// Thus, while holding onto the result of the value, you can't do anything this the
/// input stream like reading an argument.
/// This is especially a problem when you need to perform a different action depending on the concrete type of the variable.
///
/// 2. (Trickier, more flexible) Match on the type's enum variants to determine the
/// concrete type of the variable.
/// The [TypedVariable] value obtained in this way can be used to perform operations on the value.
/// The main benefit of this approach is that after matching on the type, you can still use the input
/// stream to do things because there is not borrow alive.
///
pub enum Variable<S> {
Int(TypedVariable<S, i32>),
CatCode(TypedVariable<S, types::CatCode>),
MathCode(TypedVariable<S, types::MathCode>),
TokenList(TypedVariable<S, Vec<token::Token>>),
}
/// A key that uniquely identifies the getters ([RefFn] and [MutRefFn]) in a command or variable.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub(crate) struct GettersKey(usize, usize);
/// A TeX variable of a specific Rust type `T`.
pub struct TypedVariable<S, T>(RefFn<S, T>, MutRefFn<S, T>, Index);
impl<S, T> Copy for TypedVariable<S, T> {}
impl<S, T> Clone for TypedVariable<S, T> {
fn clone(&self) -> Self {
*self
}
}
impl<S, T> TypedVariable<S, T> {
/// Returns an immutable reference to the variable's value.
pub fn get<'a>(&self, state: &'a S) -> &'a T {
(self.0)(state, self.2)
}
fn key(&self) -> (usize, usize, Index) {
(self.0 as usize, self.1 as usize, self.2)
}
}
impl<S, T> TypedVariable<S, T>
where
S: TexlangState,
T: SupportedType,
{
/// Sets the value of the variable.
///
/// The input and scope must be passed because of TeX's grouping semantics.
/// When the current group ends, any variable assignments made in the group
/// are rolled back.
/// Thus this function generally saves the current value of the variable in the VM so that it
/// can be restored later.
/// This is why the full input must be provided, and not just the state.
pub fn set(&self, input: &mut vm::ExecutionInput<S>, scope: groupingmap::Scope, value: T) {
let r: &mut T = (self.1)(input.state_mut(), self.2);
let overwritten_value = std::mem::replace(r, value);
// We guard the function call behind this conditional to make the current function small
// to make it beneficial to inline it.
if !input.groups().is_empty() {
SupportedType::update_save_stack(input, self, scope, overwritten_value);
} else {
SupportedType::recycle(input, overwritten_value);
}
}
}
impl<S, T> TypedVariable<S, T>
where
S: TexlangState,
T: SupportedType + crate::parse::Parsable<S>,
{
fn set_using_input(
&self,
input: &mut vm::ExecutionInput<S>,
scope: groupingmap::Scope,
) -> Result<(), Box<error::Error>> {
let (_, value) = <(OptionalEquals, T)>::parse(input)?;
self.set(input, scope, value);
Ok(())
}
}
impl<S, T> PartialEq for TypedVariable<S, T> {
fn eq(&self, rhs: &TypedVariable<S, T>) -> bool {
self.key() == rhs.key()
}
}
impl<S, T> Eq for TypedVariable<S, T> {}
impl<S, T> Hash for TypedVariable<S, T> {
fn hash<H>(&self, state: &mut H)
where
H: Hasher,
{
self.key().hash(state);
}
}
/// Trait satisfied by all Rust types that can be used as TeX variables.
///
/// It exists to make the variables API more ergonomic.
/// For example, it is used to provide a uniform constructor [Command::new_array] for commands.
/// The trait cannot be implemented for new types.
pub trait SupportedType: Sized {
/// Create a new command of this type with the provided reference functions and index resolver.
fn new_command<S>(
ref_fn: RefFn<S, Self>,
ref_mut_fn: MutRefFn<S, Self>,
index_resolver: Option<IndexResolver<S>>,
) -> Command<S>;
/// Update the VM's save stack after a variable assignment.
fn update_save_stack<S>(
input: &mut vm::ExecutionInput<S>,
variable: &TypedVariable<S, Self>,
scope: groupingmap::Scope,
overwritten_value: Self,
);
/// Recycle a value that's about to be dropped.
///
/// This method is intended for token lists, in which case the vector is returned
/// to the buffers pool.
fn recycle<S>(input: &mut vm::ExecutionInput<S>, overwritten_value: Self) {
(_, _) = (input, overwritten_value)
}
/// Create a new typed variable of this type from the getters in the command and the provided index.
///
/// Return `None` if the command has a different type to `Self`.
fn new_typed_variable<S>(command: &Command<S>, index: Index) -> Option<TypedVariable<S, Self>>;
}
/// This function is used to implement the [SupportedType::update_save_stack] method.
///
/// It's a bit janky to implement the logic as a free function, rather than, say, as
/// a default trait implementation.
/// The main problem is that the implementation calls into the save stack, which is an
/// internal VM data structure.
/// Any way that does this on the trait directly requires making some of the save stack
/// type public, because [SupportedType] is public.
fn update_save_stack<S, T: Clone + SupportedType, F>(
input: &mut vm::ExecutionInput<S>,
variable: &TypedVariable<S, T>,
scope: groupingmap::Scope,
overwritten_value: T,
map_getter: F,
) where
F: Fn(&mut SaveStackElement<S>) -> &mut SaveStackMap<S, T>,
{
match scope {
groupingmap::Scope::Global => {
let n = input.groups().len();
for _ in 0..n {
let group = &mut input.groups()[0];
if let Some(stale_value) = map_getter(group).remove(variable) {
SupportedType::recycle(input, stale_value);
}
}
}
groupingmap::Scope::Local => {
if let Some((group, _)) = input.current_group_mut() {
if let Some(stale_value) = map_getter(group).save(*variable, overwritten_value) {
SupportedType::recycle(input, stale_value);
}
}
}
}
}
macro_rules! supported_type_impl {
( $( ($type: path, $enum_variant: ident, $save_stack_field: ident $( , $recycle_fn: ident )? ), )+ ) => {
fn new_variable<S>(getters: &Getters<S>, index: Index) -> Variable<S> {
match getters {
$(
Getters::$enum_variant(a, b) => Variable::$enum_variant(TypedVariable(*a, *b, index)),
)+
}
}
impl<S: TexlangState> Variable<S> {
/// Return a reference to the value of the variable.
pub fn value<'a>(&self, state: &'a S) -> ValueRef<'a> {
match self {
$(
Variable::$enum_variant(variable) => ValueRef::$enum_variant(variable.get(state)),
)+
}
}
/// Set the value of a variable using the following tokens in the input stream.
fn set_value_using_input(
&self,
input: &mut vm::ExecutionInput<S>,
scope: groupingmap::Scope,
) -> Result<(), Box<error::Error>> {
match self {
$(
Variable::$enum_variant(variable) => variable.set_using_input(input, scope),
)+
}
}
}
enum Getters<S> {
$(
$enum_variant(RefFn<S, $type>, MutRefFn<S, $type>),
)+
}
impl<S> Clone for Getters<S> {
fn clone(&self) -> Self {
match self {
$(
Self::$enum_variant(a, b) => Self::$enum_variant(*a, *b),
)+
}
}
}
impl<S> Getters<S> {
fn key(&self) -> GettersKey {
match self {
$(
Getters::$enum_variant(a, b) => GettersKey(*a as usize, *b as usize),
)+
}
}
}
$(
impl SupportedType for $type {
fn new_command<S>(
ref_fn: RefFn<S, Self>,
ref_mut_fn: MutRefFn<S, Self>,
index_resolver: Option<IndexResolver<S>>,
) -> Command<S> {
Command {
getters: Getters::$enum_variant(ref_fn, ref_mut_fn),
index_resolver,
}
}
fn update_save_stack<S>(
input: &mut vm::ExecutionInput<S>,
variable: &TypedVariable<S, Self>,
scope: groupingmap::Scope,
overwritten_value: Self,
) {
update_save_stack(input, variable, scope, overwritten_value, |element| {
&mut element.$save_stack_field
})
}
$(
fn recycle<S>(input: &mut vm::ExecutionInput<S>, overwritten_value: Self) {
$recycle_fn(input, overwritten_value)
}
)?
fn new_typed_variable<S>(
command: &Command<S>,
index: Index,
) -> Option<TypedVariable<S, Self>> {
match command.getters {
Getters::$enum_variant(a, b) => Some(TypedVariable(a, b, index)),
_ => None,
}
}
}
)+
/// Internal VM data structure used to implement TeX's grouping semantics.
pub(crate) struct SaveStackElement<S> {
$(
$save_stack_field: SaveStackMap<S, $type>,
)+
}
impl<S> Default for SaveStackElement<S> {
fn default() -> Self {
Self {
$(
$save_stack_field: Default::default(),
)+
}
}
}
impl<S> SaveStackElement<S> {
pub(crate) fn restore(self, input: &mut vm::ExecutionInput<S>) {
$(
self.$save_stack_field.restore(input);
)+
}
pub(crate) fn serializable<'a>(
&'a self,
built_ins: &HashMap<GettersKey, token::CsName>,
) -> SerializableSaveStackElement<'a> {
SerializableSaveStackElement {
$(
$save_stack_field: self.$save_stack_field.serializable(built_ins),
)+
}
}
}
#[cfg_attr(feature = "serde", derive(::serde::Serialize, ::serde::Deserialize))]
pub(crate) struct SerializableSaveStackElement<'a> {
$(
$save_stack_field: Vec<(token::CsName, usize, Cow<'a, $type>)>,
)+
}
impl<'a> SerializableSaveStackElement<'a> {
pub(crate) fn finish_deserialization<S>(
self,
built_ins: &HashMap<token::CsName, command::BuiltIn<S>>,
) -> SaveStackElement<S> {
SaveStackElement {
$(
$save_stack_field: SaveStackMap::from_deserialized(self.$save_stack_field, built_ins),
)+
}
}
}
};
}
supported_type_impl!(
(i32, Int, i32),
(types::CatCode, CatCode, catcode),
(types::MathCode, MathCode, math_code),
(Vec<token::Token>, TokenList, token_list, recycle_token_list),
);
fn recycle_token_list<S>(input: &mut vm::ExecutionInput<S>, overwritten_value: Vec<token::Token>) {
input.return_token_buffer(overwritten_value);
}
/// Internal VM data structure used to implement TeX's grouping semantics.
struct SaveStackMap<S, T>(HashMap<TypedVariable<S, T>, T>);
impl<S, T> Default for SaveStackMap<S, T> {
fn default() -> Self {
Self(HashMap::new())
}
}
impl<S, T: Clone + SupportedType> SaveStackMap<S, T> {
fn save(&mut self, variable: TypedVariable<S, T>, value: T) -> Option<T> {
match self.0.entry(variable) {
std::collections::hash_map::Entry::Occupied(_) => Some(value),
std::collections::hash_map::Entry::Vacant(v) => {
v.insert(value);
None
}
}
}
fn remove(&mut self, variable: &TypedVariable<S, T>) -> Option<T> {
self.0.remove(variable)
}
fn restore(self, input: &mut vm::ExecutionInput<S>) {
for (v, restored_value) in self.0 {
let dest = (v.1)(input.state_mut(), v.2);
let overwritten_value = std::mem::replace(dest, restored_value);
SupportedType::recycle(input, overwritten_value);
}
}
fn serializable<'a>(
&'a self,
built_ins: &HashMap<GettersKey, token::CsName>,
) -> Vec<(token::CsName, usize, Cow<'a, T>)> {
self.0
.iter()
.map(|(typed_variable, value): (&TypedVariable<S, T>, &T)| {
let key = GettersKey(typed_variable.0 as usize, typed_variable.1 as usize);
let cs_name = built_ins.get(&key).unwrap();
(*cs_name, typed_variable.2 .0, Cow::Borrowed(value))
})
.collect()
}
}
impl<S, T: SupportedType + Clone> SaveStackMap<S, T> {
fn from_deserialized<'a>(
deserialized: Vec<(token::CsName, usize, Cow<'a, T>)>,
built_ins: &HashMap<token::CsName, command::BuiltIn<S>>,
) -> Self {
let m = deserialized
.into_iter()
.map(
|(cs_name, index, value): (token::CsName, usize, Cow<'a, T>)| {
// TODO: surface error here
let built_in = built_ins.get(&cs_name).unwrap();
let typed_variable = match built_in.cmd() {
command::Command::Variable(variable_command) => {
// TODO: error instead of unwrap
SupportedType::new_typed_variable(variable_command, Index(index))
.unwrap()
}
_ => panic!("wrong type of built in TODO return an error here"),
};
(typed_variable, value.into_owned())
},
)
.collect();
Self(m)
}
}