1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
//! The TeX font metric (.tfm) file format.
use std::collections::BTreeMap;
use std::collections::HashMap;
use std::collections::HashSet;
mod debug;
mod deserialize;
mod serialize;
mod validate;
use super::*;
pub use deserialize::DeserializationError;
pub use deserialize::DeserializationWarning;
pub use deserialize::RawFile;
pub use deserialize::SubFileSizes;
pub use validate::ValidationWarning;
/// Complete contents of a TeX font metric (.tfm) file.
///
/// The struct contain multiple vectors.
/// In TeX and TFtoPL there is an optimization in which all of data in the vectors
/// is stored in one large vector of 32-bit integers.
/// The conversion from [u32] to the specific types like [Number] are then done when the
/// data is needed.
/// This makes the memory footprint of this type much more compact,
/// and such a change may be considered in the future.
///
/// In fact in TeX the font data for all fonts is stored in one contiguous piece of memory
/// (`font_info`, defined in TeX82.2021.549).
/// This is a little too unsafe to pull off though.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct File {
/// Header.
pub header: Header,
/// Smallest character in the .tfm.
pub smallest_char: Char,
/// Character dimensions.
pub char_dimens: BTreeMap<Char, CharDimensions>,
/// Character tags.
///
/// Note there is no correlation between a character having
/// a tag and a character having a dimension.
/// All four combinations of (has or hasn't dimensions) and (has or hasn't a tag)
/// are possible.
pub char_tags: BTreeMap<Char, CharTag>,
/// Tags that have been unset, but whose discriminant is still written to a .tfm file by PLtoTF.
pub unset_char_tags: BTreeMap<Char, u8>,
/// Character widths
pub widths: Vec<Number>,
/// Character heights
pub heights: Vec<Number>,
/// Character depths
pub depths: Vec<Number>,
/// Character italic corrections
pub italic_corrections: Vec<Number>,
/// Lig kern program.
pub lig_kern_program: ligkern::lang::Program,
/// Kerns. These are referenced from inside the lig kern commands.
pub kerns: Vec<Number>,
/// Extensible characters.
pub extensible_chars: Vec<ExtensibleRecipe>,
/// Font parameters.
pub params: Vec<Number>,
}
/// Data about one character in a .tfm file.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct CharDimensions {
/// Index of the width of this character in the widths array.
///
/// In valid TFM files, this index will always be non-zero.
/// This is because if the width index is zero it means there is no data for the character in the file.
/// In this case the other indices (height, etc.) are necessarily zero.
/// See TFtoPL.2014.? (where blocks of data with a zero width index are skipped)
/// and PLtoTF.2014.? (where missing characters are written with all indices 0).
///
/// There is one edge case where this index can be zero.
/// This is if the width index is invalid.
/// In this case tftopl essentially sets the width index to 0.
///
/// Note that even if a character doesn't have dimensions, it can still have a tag.
pub width_index: WidthIndex,
/// Index of the height of this character in the height array.
pub height_index: u8,
pub depth_index: u8,
pub italic_index: u8,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum WidthIndex {
Invalid,
Valid(NonZeroU8),
}
impl WidthIndex {
pub fn get(&self) -> u8 {
match self {
WidthIndex::Invalid => 0,
WidthIndex::Valid(n) => n.get(),
}
}
}
/// Tag of a character in a .tfm file.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum CharTag {
Ligature(u8),
List(Char),
Extension(u8),
}
impl CharTag {
pub fn ligature(&self) -> Option<u8> {
match self {
CharTag::Ligature(l) => Some(*l),
CharTag::List(_) | CharTag::Extension(_) => None,
}
}
pub fn list(&self) -> Option<Char> {
match self {
CharTag::List(c) => Some(*c),
CharTag::Ligature(_) | CharTag::Extension(_) => None,
}
}
pub fn extension(&self) -> Option<u8> {
match self {
CharTag::Extension(u) => Some(*u),
CharTag::Ligature(_) | CharTag::List(_) => None,
}
}
}
/// Extensible recipe instruction in a .tfm file.
#[derive(Debug, Default, Clone, PartialEq, Eq)]
pub struct ExtensibleRecipe {
pub top: Option<Char>,
pub middle: Option<Char>,
pub bottom: Option<Char>,
pub rep: Char,
}
impl ExtensibleRecipe {
pub fn is_seven_bit(&self) -> bool {
self.chars().all(|c| c.is_seven_bit())
}
pub fn chars(&self) -> impl Iterator<Item = Char> {
[self.top, self.middle, self.bottom, Some(self.rep)]
.into_iter()
.flatten()
}
}
impl Default for File {
fn default() -> Self {
Self {
header: Default::default(),
smallest_char: Char(1),
char_dimens: Default::default(),
char_tags: Default::default(),
unset_char_tags: Default::default(),
widths: vec![Number::ZERO],
heights: vec![Number::ZERO],
depths: vec![Number::ZERO],
italic_corrections: vec![Number::ZERO],
lig_kern_program: Default::default(),
kerns: vec![],
extensible_chars: vec![],
params: Default::default(),
}
}
}
/// Start printing debugging information about a .tfm file.
pub fn debug<'a>(
path: Option<&'a str>,
sub_file_sizes: SubFileSizes,
tfm_file: Option<&'a File>,
raw_file: Option<&'a RawFile<'a>>,
sections: Vec<Section>,
) -> impl std::fmt::Display + 'a {
debug::Debug {
sub_file_sizes,
path,
raw_file,
tfm_file,
sections,
}
}
impl File {
pub fn from_raw_file(raw_file: &RawFile) -> Self {
deserialize::from_raw_file(raw_file)
}
pub fn validate_and_fix(&mut self) -> Vec<ValidationWarning> {
validate::validate_and_fix(self)
}
pub fn deserialize(
b: &[u8],
) -> (
Result<File, DeserializationError>,
Vec<DeserializationWarning>,
) {
deserialize::deserialize(b)
}
pub fn serialize(&self) -> Vec<u8> {
serialize::serialize(self)
}
/// Return a map from characters to the lig/kern entrypoint for that character.
/// TODO: can probably return impl Iterator<Item=(Char, u8)>
pub fn lig_kern_entrypoints(&self) -> HashMap<Char, u8> {
self.char_tags
.iter()
.filter_map(|(c, d)| match *d {
CharTag::Ligature(l) => Some((*c, l)),
_ => None,
})
.collect()
}
fn char_info_bounds(&self) -> Option<(Char, Char)> {
let mut r: Option<(Char, Char)> = None;
for c in self.char_dimens.keys().copied() {
r = Some(match r {
None => (c, c),
Some((lower, upper)) => (
if c.0 < lower.0 { c } else { lower },
if c.0 < upper.0 { upper } else { c },
),
})
}
r
}
/// Calculate the checksum of this .tfm file.
pub fn checksum(&self) -> u32 {
// This checksum algorithm is in PLtoTF.2014.134.
let (bc, ec) = self.char_info_bounds().unwrap_or((Char(1), Char(0)));
let mut b = [bc.0, ec.0, bc.0, ec.0];
for c in bc.0..=ec.0 {
let char_dimens = match self.char_dimens.get(&Char(c)) {
None => continue,
Some(char_dimens) => char_dimens,
};
let width = self.widths[char_dimens.width_index.get() as usize].0;
// TODO: adjust based on the design units
let width = width + (c as i32 + 4) * 0o20_000_000;
let add = |b: u8, m: u8| -> u8 {
(((b as i32) + (b as i32) + width) % (m as i32))
.try_into()
.expect("(i32 % u8) is always a u8")
};
b = [
add(b[0], 255),
add(b[1], 253),
add(b[2], 251),
add(b[3], 247),
]
}
u32::from_be_bytes(b)
}
}
impl From<crate::pl::File> for File {
fn from(pl_file: crate::pl::File) -> Self {
let mut char_bounds: Option<(Char, Char)> = None;
let lig_kern_entrypoints = pl_file.lig_kern_entrypoints(true);
let mut lig_kern_program = pl_file.lig_kern_program;
let kerns = lig_kern_program.unpack_kerns();
let lig_kern_entrypoints = lig_kern_program.pack_entrypoints(lig_kern_entrypoints);
let mut widths = pl_file.additional_widths;
let mut heights = pl_file.additional_heights;
let mut depths = pl_file.additional_depths;
let mut italic_corrections = pl_file.additional_italics;
for (char, char_dimens) in &pl_file.char_dimens {
widths.push(char_dimens.width.unwrap_or_default());
match char_dimens.height {
None | Some(Number::ZERO) => {}
Some(height) => heights.push(height),
}
match char_dimens.depth {
None | Some(Number::ZERO) => {}
Some(depth) => depths.push(depth),
}
match char_dimens.italic_correction {
None | Some(Number::ZERO) => {}
Some(italic_correction) => italic_corrections.push(italic_correction),
}
char_bounds = Some(match char_bounds {
None => (*char, *char),
Some((lower, upper)) => (
if *char < lower { *char } else { lower },
if *char > upper { *char } else { upper },
),
})
}
let (widths, width_to_index) = compress(&widths, 255);
let (heights, height_to_index) = compress(&heights, 15);
let (depths, depth_to_index) = compress(&depths, 15);
let (italic_corrections, italic_correction_to_index) = compress(&italic_corrections, 63);
let mut extensible_chars = vec![];
let char_dimens = match char_bounds {
None => Default::default(),
Some((lower, upper)) => {
let mut m: BTreeMap<Char, CharDimensions> = Default::default();
for c in lower.0..=upper.0 {
let pl_data = match pl_file.char_dimens.get(&Char(c)) {
Some(pl_data) => pl_data,
None => continue,
};
let width = pl_data.width.unwrap_or_default();
let width_index = *width_to_index.get(&width).expect(
"the map returned from compress(_,_) contains every input as a key",
);
m.insert(
Char(c),
CharDimensions {
width_index: WidthIndex::Valid(width_index),
height_index: match pl_data.height {
None => 0,
Some(height) => {
// If the height data is missing from the height_to_index map, it's because
// the height is 0. Similar with depths and italic corrections.
height_to_index
.get(&height)
.copied()
.map(NonZeroU8::get)
.unwrap_or(0)
}
},
depth_index: match pl_data.depth {
None => 0,
Some(depth) => depth_to_index
.get(&depth)
.copied()
.map(NonZeroU8::get)
.unwrap_or(0),
},
italic_index: match pl_data.italic_correction {
None => 0,
Some(italic_correction) => italic_correction_to_index
.get(&italic_correction)
.copied()
.map(NonZeroU8::get)
.unwrap_or(0),
},
},
);
}
m
}
};
let ordered_chars = {
let mut m: Vec<Char> = pl_file.char_tags.keys().copied().collect();
m.sort();
m
};
let char_tags = ordered_chars.into_iter().map(|c| {
(c,
match pl_file.char_tags.get(&c).unwrap() {
pl::CharTag::Ligature(_) => {
let entrypoint = *lig_kern_entrypoints.get(&c).expect("the map returned by crate::ligkern::lang::compress_entrypoints has a key for all chars with a lig tag");
CharTag::Ligature(entrypoint)
}
pl::CharTag::List(c) => CharTag::List(*c),
pl::CharTag::Extension(e) => {
let index: u8 = extensible_chars.len().try_into().unwrap();
extensible_chars.push(e.clone());
CharTag::Extension(index)
}
},
)
}).collect();
let mut file = Self {
header: pl_file.header,
smallest_char: char_bounds.map(|t| t.0).unwrap_or(Char(1)),
char_dimens,
char_tags,
unset_char_tags: pl_file.unset_char_tags.clone(),
widths,
heights,
depths,
italic_corrections,
lig_kern_program,
kerns,
extensible_chars,
params: pl_file.params,
};
if file.header.checksum.is_none() {
file.header.checksum = Some(file.checksum());
}
file
}
}
/// Lossy compression of numbers for TFM files.
///
/// The TFM file format can only store up to 15 heights, 15 depths and 63 italic corrections.
/// If a property list file contains, e.g., more than 15 distinct heights, something has to give.
/// PLtoTF contains a lossy compression algorithm that takes a list of values and returns another
/// bounded list of values which approximates the original list.
/// This is implemented in PLtoTF.2014.75-80 and re-implemented here.
///
/// ## How the algorithm works.
///
/// For a given delta, the algorithm partitions the ordered list of values such that within
/// each partition the maximum distance between two elements is delta. All of the values within
/// the partition are then approximated by `(interval_max+interval_min)/2`.
/// As such, each value may be increased or decreased by up to `delta/2`.
/// After this procedure, the list of values is replaced by the list of approximations.
/// This compresses the list of values into a list whose size is the number of intervals.
///
/// Given this subroutine, the algorithm finds the smallest delta such that the number of intervals
/// is less than the required maximum (e.g., 15 for heights).
///
/// There are some important features of this algorithm to note:
///
/// - For a given delta value there may be multiple possible partitions.
/// The algorithm uses a greedy approach in which it maximizes the size of the first partition,
/// then the size of the second partition, and so on.
///
/// - Distinct delta values can yield the same partition.
/// For example, if the initial values are `[1, 4, 5]` then any delta in the range `[1, 3)`
/// gives the same result (`[[1], [4, 5]]`)
/// Whenever we check a delta, we are really checking the _interval of deltas_ that gives the same result.
/// Both Knuth's and our implementations use this fact to speed up the search by reducing the search space.
/// E.g. in the example above, after checking `delta=1` we _don't_ check `delta=2`.
///
/// ## This re-implementation
///
/// The re-implementation here follows PLtoTF closely enough, but with one modification.
/// To find the optimal delta, Knuth first calculates the minimal possible delta.
/// This is the minimum distance between adjacent elements in the ordered list of values.
/// In general this will not be a valid solution because the number of intervals
/// it generates will be large.
/// So, he next finds the smallest `k` such that `2^k * min_delta` is a valid solution.
/// Te then does a upwards linear search within the interval `[min_delta * 2^{k-1}, min_delta * 2^k]` to find
/// the optimal delta.
///
/// Checking a particular delta is `O(n)`.
/// The worst-case running time of Knuth's algorithm is then `O(n^3)` because the interval
/// `[2^{k-1}, 2^k]` can contain `O(n^2)` distinct deltas to check in the worst-case.*
///
/// In the re-implementation here we realize that the problem of finding the smallest possible delta
/// is a classic binary search problem.
/// This is because if delta is a valid solution, any larger delta also is;
/// and if delta is not a valid solution, any smaller delta is also not a valid solution.
/// The re-implementation using binary search is `O(n log n)`.
/// Moreover, the constant factors are about the same.
///
/// * In the worst-case there are O(n^2) distinct deltas because each pair of elements yields a delta.
/// Let m be the smallest delta and M the largest delta.
/// In the initial `2^k`-based ranging scheme, the largest `K` satisfies `m 2^{K-1} < M <= m 2^K`,
/// or `K-1 <= log_2(M/m)`. Thus there are `K=O(1)` ranges in this initial scheme.
/// By the pigeon-hole principle, there exists a `k` such that the range `[m * 2^{k-1}, m * 2^k]`
/// contains O(n^2) elements.
/// In the worst-case, the solution is the maximum element of this range.
pub fn compress(values: &[Number], max_size: u8) -> (Vec<Number>, HashMap<Number, NonZeroU8>) {
let max_size = max_size as usize;
let dedup_values = {
let s: HashSet<Number> = values.iter().copied().collect();
// remove the zero value for non-widths
// and then add it back in at the start
let mut v: Vec<Number> = s.into_iter().collect();
v.sort();
v
};
// After deduplication, it is possible we don't need to compress at all so we can exit early.
// This also handles the case when the values slice is empty.
if dedup_values.len() <= max_size {
let m: HashMap<Number, NonZeroU8> = dedup_values
.iter()
.enumerate()
.map(|(i, &w)| {
let i: u8 = i.try_into().expect("`dedup_values` has at most `max_size` elements, so the index is at most `max_size-1`");
let i: NonZeroU8 = (i+1).try_into().expect("`i<=max_size-1<=u8::MAX`, so `i+1<=u8::MAX`");
(w, i) })
.collect();
let mut dedup_values = dedup_values;
dedup_values.push(Number::ZERO);
dedup_values.rotate_right(1);
return (dedup_values, m);
}
// For the binary search we maintain lower and upper indices as usual.
// The optimal delta is in the interval [lower, upper].
//
// Invariant: delta<lower is never a solution.
// Because delta must be non-negative, we initialize it to zero.
let mut lower = Number::ZERO;
// Invariant: delta=upper is always solution.
// To initialize upper and begin the search we construct a solution that always works: a single
// interval encompassing the entire slice and the largest delta possible.
let max_delta = *dedup_values.last().unwrap() - *dedup_values.first().unwrap();
let mut upper = max_delta;
let mut solution = vec![dedup_values.len()];
let mut buffer = vec![];
while lower < upper {
// After the following line delta is potentially equal to lower. This is what we want as
// we know upper is a solution so to advance the search when upper=lower+1
// we need to check lower+1.
let delta = lower + (upper - lower) / 2;
let mut interval_start = *dedup_values.first().unwrap();
// The smallest delta such that the candidate solution will be the same.
// This is the maximum of all gaps that don't start a new interval.
let mut delta_lower = Number::ZERO;
// The largest delta such that the candidate solution will be different.
// This is the minimum of all gaps that start a new interval.
let mut delta_upper = max_delta;
for (i, &v) in dedup_values.iter().enumerate() {
let gap = v - interval_start;
if gap > delta {
// We need to start a new interval
if gap < delta_upper {
delta_upper = gap;
}
buffer.push(i);
// If the candidate solution is already too big, we can exit early.
if buffer.len() >= max_size {
break;
}
interval_start = v;
} else {
// We need to extend the current interval
// For any delta in the range [gap, delta] we would have made the same choice here.
if gap > delta_lower {
delta_lower = gap;
}
}
}
buffer.push(dedup_values.len());
if buffer.len() <= max_size {
// solution
std::mem::swap(&mut buffer, &mut solution);
upper = delta_lower;
} else {
// not a solution
lower = delta_upper;
}
buffer.clear();
}
let mut value_to_index = HashMap::<Number, NonZeroU8>::new();
let mut result = vec![Number::ZERO];
let mut previous = 0_usize;
for i in solution {
let interval = &dedup_values[previous..i];
previous = i;
for &v in interval {
let index: u8 = result.len().try_into().expect("the `result` array contains at most `1+max_size` elements, so the index it at most `max_size` which is a u8");
let index: NonZeroU8 = index
.try_into()
.expect("the `result` array contains at least 1 element so this is never 0");
value_to_index.insert(v, index);
}
let replacement = (*interval.last().unwrap() + *interval.first().unwrap()) / 2;
result.push(replacement);
}
(result, value_to_index)
}
#[derive(Debug, Hash, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub enum Section {
/// Sub-file sizes
SubFileSizes,
/// Header
Header,
/// Character data
CharInfos,
/// Widths array
Widths,
/// Heights array
Heights,
/// Depths array
Depths,
/// Italic corrections array
ItalicCorrections,
/// Lig/kern instructions
LigKern,
/// Kerns array
Kerns,
/// Extensible recipes
ExtensibleRecipes,
/// Params array
Params,
}
impl Section {
pub const NAMES: [&'static str; 11] = [
"sub-file-sizes",
"header",
"char-infos",
"widths",
"heights",
"depths",
"italic-corrections",
"lig-kern",
"kerns",
"extensible-recipes",
"params",
];
pub const ALL_SECTIONS: [Section; 11] = [
Section::SubFileSizes,
Section::Header,
Section::CharInfos,
Section::Widths,
Section::Heights,
Section::Depths,
Section::ItalicCorrections,
Section::LigKern,
Section::Kerns,
Section::ExtensibleRecipes,
Section::Params,
];
}
impl TryFrom<&str> for Section {
type Error = ();
fn try_from(value: &str) -> Result<Self, Self::Error> {
for i in 0..Section::NAMES.len() {
if Section::NAMES[i] == value {
return Ok(Section::ALL_SECTIONS[i]);
}
}
Err(())
}
}
impl std::fmt::Display for Section {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", Section::NAMES[*self as usize])
}
}
#[cfg(test)]
mod tests {
use super::*;
fn run_compress_test(values: Vec<Number>, max_size: u8, want: Vec<Number>, want_map: Vec<u8>) {
let (got, got_map) = compress(&values, max_size);
assert_eq!(got, want);
let want_map: HashMap<Number, NonZeroU8> = want_map
.into_iter()
.enumerate()
.map(|(i, t)| (values[i], t.try_into().unwrap()))
.collect();
assert_eq!(got_map, want_map);
}
macro_rules! compress_tests {
( $( ($name: ident, $values: expr, $max_size: expr, $want: expr, $want_map: expr, ), )+ ) => {
$(
#[test]
fn $name () {
let values = $values;
let max_size = $max_size;
let want = $want;
let want_map = $want_map;
run_compress_test(values, max_size, want, want_map);
}
)+
};
}
compress_tests!(
(no_op_0, vec![], 1, vec![Number(0)], vec![],),
(
no_op_2,
vec![Number::UNITY * 2, Number::UNITY],
2,
vec![Number(0), Number::UNITY, Number::UNITY * 2],
vec![2, 1],
),
(
just_deduplication,
vec![Number::UNITY, Number::UNITY],
1,
vec![Number(0), Number::UNITY],
vec![1, 1],
),
(
simple_compression_case,
vec![Number::UNITY, Number::UNITY * 2],
1,
vec![Number(0), Number::UNITY * 3 / 2],
vec![1, 1],
),
(
simple_compression_case_2,
vec![
Number::UNITY,
Number::UNITY * 2,
Number::UNITY * 200,
Number::UNITY * 201
],
2,
vec![Number(0), Number::UNITY * 3 / 2, Number::UNITY * 401 / 2],
vec![1, 1, 2, 2],
),
(
lower_upper_close_edge_case_1,
vec![Number(1), Number(3)],
1,
vec![Number(0), Number(2)],
vec![1, 1],
),
(
lower_upper_close_edge_case_2,
vec![Number(0), Number(2)],
1,
vec![Number(0), Number(1)],
vec![1, 1],
),
(
lower_upper_close_edge_case_3,
vec![Number(1), Number(4)],
1,
vec![Number(0), Number(2)],
vec![1, 1],
),
(
lower_upper_close_edge_case_4,
vec![Number(1), Number(2)],
1,
vec![Number(0), Number(1)],
vec![1, 1],
),
);
}