1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
//! # tfm: TeX font metric data
//!
//! This is a crate for working with TeX font metric data.
//! It includes:
//!
//! - Functions to read and write TeX font metric (.tfm) files
//! to and from a value of type [`format::File`]
//! ([`deserialize`](format::File::deserialize), [`serialize`](format::File::serialize)).
//!
//! - Functions to read and write property list (.pl) files
//! to and from a value of type [`pl::File`]
//! ([`from_pl_source_code`](pl::File::from_pl_source_code), [`display`](pl::File::display)).
//!
//! - Converters from .tfm to .pl files and vice-versa
//! (using Rust's [`From`] trait to go between [`format::File`] and [`pl::File`]).
//!
//! - A type [`Font`] that represents a fully validated and compiled TeX font
//! and that can be used to efficiently query data about the font
//! (e.g., "what is the width of the character A?").
//! This type and its methods are performance optimized and
//! designed for use in the hot main loops
//! of typesetting software such as TeX.
//!
//! ## Background
//!
//! Probably the most famous part of the implementation of TeX is the Knuth-Plass line breaking algorithm.
//! This algorithm determines the "optimal" places to add line breaks when typesetting a paragraph of text.
//! In order to run the algorithm one needs to provide the dimensions of all characters in the current font.
//! These dimensions are used to size the boxes in the Knuth-Plass box and glue model.
//!
//! In TeX, character dimensions are provided using TeX font metric files.
//! These are binary files.
//! By convention they have a .tfm file extension.
//! Unlike more modern file formats like TrueType, .tfm files only contain the font dimensions;
//! they don't contains the glyphs.
//! In general,
//! .tfm files are produced by other software like Metafont,
//! placed in some well-known directory in the TeX distribution,
//! and then read into memory when TeX is running.
//!
//! Because .tfm files are binary files, it's hard to debug or tweak them.
//! To remedy this, Knuth and his team developed another file format called a property list file
//! (extension .pl or .plst)
//! that contains the same information but in a modifiable text format.
//! They then wrote two programs:
//! `tftopl` to convert a .tfm file to a .pl file,
//! and `pltotf` to convert a .pl file to a .tfm file.
//!
//! The general goal of this crate to fully re-implement all of the TeX font metric
//! code written by Knuth and others.
//! This includes `tftopl`, `pltotf`, and also the parts of TeX itself that contain logic
//! for reading and interpreting .tfm files.
//! However, unlike these monolithic software programs,
//! this re-implementation is in the form of a modular library in which
//! individual pieces of logic and be used and re-used.
//!
//! ## Basic example
//!
//! ```
//! // Include the .tfm file for Computer Modern in size 10pt.
//! let tfm_bytes = include_bytes!["../corpus/computer-modern/cmr10.tfm"];
//!
//! // Deserialize the .tfm file.
//! let (tfm_file_or_error, deserialization_warnings) = tfm::format::File::deserialize(tfm_bytes);
//! let mut tfm_file = tfm_file_or_error.expect("cmr10.tfm is a valid .tfm file");
//! assert_eq![deserialization_warnings, vec![], "the data in cmr10.tfm is 100% valid, so there are no deserialization warnings"];
//! // TODO assert_eq![tfm_file.header.design_size, tfm::Number::UNITY * 10]; make it 11 to be more interesting
//! // TODO query some data
//!
//! // Validate the .tfm file.
//! let validation_warnings = tfm_file.validate_and_fix();
//! assert_eq![validation_warnings, vec![], "the data in cmr10.tfm is 100% valid, so there are no validation warnings"];
//!
//! // Convert the .tfm file to a .pl file and print it.
//! let pl_file: tfm::pl::File = tfm_file.clone().into();
//! // TODO query some data
//! println!["cmr10.pl:\n{}", pl_file.display(/*indent=*/2, tfm::pl::CharDisplayFormat::Default)];
//!
//! // TODO Convert the .tfm file to the crate's Font type.
//! ```
//!
//!
//! ## Advanced functionality
//!
//! In addition to supporting the basic use cases of querying font metric data
//! and converting between different formats,
//! this crate has advanced functionality for performing additional tasks on font metric data.
//! The full set of functionality can be understood by navigating through the crate documentation.
//! But here are 3 highlights we think are interesting:
//!
//! - **Language analysis of .pl files**:
//! In `pltotf`, Knuth parses .pl files in a single pass.
//! This crate takes a common approach nowadays of parsing in multiple passes:
//! first constructing a [concrete syntax tree](pl::cst::Cst) (or parse tree),
//! next constructing a [fully typed and checked abstract syntax tree](pl::ast::Ast),
//! and finally building the [`pl::File`] itself.
//! Each of the passes is exposed, so you can e.g. just build the AST for the .pl file and
//! do some analysis on it.
//!
//! - **Debug output for .tfm files**:
//!
//! - **Compilation of lig/kern programs**:
//!
//!
//! ## Binaries
//!
//! The Texcraft project produces 3 binaries based on this crate:
//!
//! - `tftopl` and `pltotf`: re-implementations of Knuth's programs.
//! - `tfmtools`: a new binary that has a bunch of different tools
//! for working with TeX font metric data.
//! Run `tfmtools help` to list all of the available tools.
//!
//! In the root of [the Texcraft repository](https://github.com/jamespfennell/texcraft)
//! these tools can be run with `cargo run --bin $NAME`
//! and built with `cargo build --bin $NAME`.
//!
//!
//! ## Correctness
//!
//! As part of the development of this crate significant effort has been spent
//! ensuring it exactly replicates the work of Knuth.
//! This correctness checking is largely based around diff testing the binaries
//! `tftopl` and `pltotf`.
//! We verify that the Texcraft and Knuth implementations have the same output
//! and generate the same error messages.
//!
//! This diff testing has been performed in a few different ways:
//!
//! - We have run diff tests over all ~100,000 .tfm files in CTAN.
//! These tests verify that `tftopl` gives the correct result,
//! and that running `pltotf` on the output .pl file gives the correct result too.
//! Unfortunately running `pltotf` on the .pl files in CTAN is infeasible
//! because most of these files are Perl scripts, not property list files.
//!
//! - We have developed a fuzz testing harness (so far just for `tftopl`)
//! that generates highly heterogenous .tfm files and verifies that `tftopl` gives the correct result.
//! This fuzz testing has uncovered many issues in the Texcraft implementation,
//! and has even identified [a 30-year old bug](https://tug.org/pipermail/tex-k/2024-March/004031.html)
//! in Knuth's implementation of `tftopl`.
//!
//! Any .tfm or .pl file that exposes a bug in this library is added to
//! [our automated testing corpus](https://github.com/jamespfennell/texcraft/tree/main/crates/tfm/bin/tests/data).
//! Running `cargo t` validates that Texcraft's binaries give the same result as Knuth's binaries
//! (the output of Knuth's binaries is in source control).
//! This ensures there are no regressions.
//!
//! If you discover a .tfm or .pl file such that the Texcraft and Knuth implementations
//! diverge, this indicates there is a bug in this library.
//! Please create an issue on the Texcraft GitHub repo.
//! We will fix the bug and add your files to the testing corpus.
pub mod algorithms;
use std::{
collections::{BTreeSet, HashMap, HashSet},
num::NonZeroU8,
};
pub mod format;
pub mod ligkern;
pub mod pl;
/// The TFM header, which contains metadata about the file.
///
/// This is defined in TFtoPL.2014.10.
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct Header {
/// The font checksum, if specified.
///
/// In .tfm files checksums are always specified because the format has no
/// way to omit a checksum.
///
/// In .pl files checksums are specified if the `CHECKSUM` node appears.
/// If no checksum is specified in a .pl file, pltotf calculates the
/// correct value and writes that.
///
/// In TeX82, this is stored in the `font_check` array (TeX82.2021.549).
pub checksum: Option<u32>,
/// In TeX82, this is stored in the `font_dsize` array (TeX82.2021.549).
pub design_size: Number,
pub design_size_valid: bool,
pub character_coding_scheme: Option<String>,
pub font_family: Option<String>,
pub seven_bit_safe: Option<bool>,
pub face: Option<Face>,
/// The TFM format allows the header to contain arbitrary additional data.
pub additional_data: Vec<u32>,
}
pub struct Font {
_todo: bool,
}
impl Header {
/// Returns the default header when parsing property list files.
///
/// This is defined in PLtoTF.2014.70.
pub fn pl_default() -> Header {
Header {
checksum: None,
design_size: Number::UNITY * 10,
design_size_valid: true,
character_coding_scheme: Some("UNSPECIFIED".into()),
font_family: Some("UNSPECIFIED".into()),
seven_bit_safe: None,
face: Some(0.into()),
additional_data: vec![],
}
}
/// Returns the default header when parsing .tfm files.
///
/// This is defined in PLtoTF.2014.70.
pub fn tfm_default() -> Header {
Header {
checksum: Some(0),
design_size: Number::ZERO,
design_size_valid: true,
character_coding_scheme: None,
font_family: None,
seven_bit_safe: None,
face: None,
additional_data: vec![],
}
}
}
/// A character in a TFM file.
///
/// TFM and PL files only support 1-byte characters.
#[derive(Debug, Default, PartialEq, Eq, Hash, Clone, Copy, PartialOrd, Ord)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
pub struct Char(pub u8);
impl std::fmt::Display for Char {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if (self.0 as char).is_ascii_graphic() {
write!(f, "{}", self.0 as char)
} else {
write!(f, "0x{:02x}", self.0)
}
}
}
impl From<u8> for Char {
fn from(value: u8) -> Self {
Char(value)
}
}
impl TryFrom<char> for Char {
type Error = std::char::TryFromCharError;
fn try_from(value: char) -> Result<Self, Self::Error> {
let u: u8 = value.try_into()?;
Ok(Char(u))
}
}
macro_rules! const_chars {
( $( ($name: ident, $value: expr), )+ ) => {
$(
pub const $name: Char = Char($value);
)+
};
}
impl Char {
const_chars![
(A, b'A'),
(B, b'B'),
(C, b'C'),
(D, b'D'),
(X, b'X'),
(Y, b'Y'),
(Z, b'Z'),
];
pub fn is_seven_bit(&self) -> bool {
self.0 <= 127
}
}
/// Fixed-width numeric type used in TFM files.
///
/// This numeric type has 11 bits for the integer part,
/// 20 bits for the fractional part, and a single signed bit.
/// The inner value is the number multiplied by 2^20.
/// It is called a `fix_word` in TFtoPL.
///
/// In property list files, this type is represented as a decimal number
/// with up to 6 digits after the decimal point.
/// This is a non-lossy representation
/// because 10^(-6) is larger than 2^(-20).
#[derive(Default, PartialEq, Eq, Debug, Copy, Clone, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
pub struct Number(pub i32);
impl Number {
/// Representation of the number 0 as a [Number].
pub const ZERO: Number = Number(0);
/// Representation of the number 1 as a [Number].
pub const UNITY: Number = Number(1 << 20);
/// Returns true if the number is less than 16.0 in magnitude according to Knuth.
///
/// The number +16.0 is not allowed.
/// This is covered in the E2E tests.
/// See `check_fix` in TFtoPL.2014.60.
pub fn is_abs_less_than_16(&self) -> bool {
*self >= Number::UNITY * -16 && *self < Number::UNITY * 16
}
}
impl std::ops::Add<Number> for Number {
type Output = Number;
fn add(self, rhs: Number) -> Self::Output {
Number(self.0 + rhs.0)
}
}
impl std::ops::Sub<Number> for Number {
type Output = Number;
fn sub(self, rhs: Number) -> Self::Output {
Number(self.0 - rhs.0)
}
}
impl std::ops::Mul<i32> for Number {
type Output = Number;
fn mul(self, rhs: i32) -> Self::Output {
Number(self.0 * rhs)
}
}
impl std::ops::Div<i32> for Number {
type Output = Number;
fn div(self, rhs: i32) -> Self::Output {
Number(self.0 / rhs)
}
}
impl std::fmt::Display for Number {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// TFtoPL.2014.40-43
if self.0 < 0 {
write!(f, "-")?;
}
let integer_part = (self.0 / Number::UNITY.0).abs();
write!(f, "{integer_part}.")?;
let mut fp = (self.0 % Number::UNITY.0).abs();
fp = 10 * fp + 5;
let mut delta = 10;
loop {
if delta > 0o4_000_000 {
fp = fp + 0o2_000_000 - delta / 2;
}
write!(f, "{}", fp / 0o4_000_000)?;
fp = 10 * (fp % 0o4_000_000);
delta *= 10;
if fp <= delta {
break;
}
}
Ok(())
}
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
pub enum FaceWeight {
Light,
Medium,
Bold,
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
pub enum FaceSlope {
Roman,
Italic,
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
pub enum FaceExpansion {
Regular,
Condensed,
Extended,
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
pub enum Face {
Valid(FaceWeight, FaceSlope, FaceExpansion),
Other(u8),
}
impl From<u8> for Face {
fn from(value: u8) -> Self {
if value >= 18 {
return Face::Other(value);
}
let a = match (value % 6) / 2 {
0 => FaceWeight::Medium,
1 => FaceWeight::Bold,
2 => FaceWeight::Light,
_ => unreachable!(),
};
let b = match value % 2 {
0 => FaceSlope::Roman,
1 => FaceSlope::Italic,
_ => unreachable!(),
};
let c = match value / 6 {
0 => FaceExpansion::Regular,
1 => FaceExpansion::Condensed,
2 => FaceExpansion::Extended,
_ => unreachable!(),
};
Face::Valid(a, b, c)
}
}
impl From<Face> for u8 {
fn from(value: Face) -> Self {
match value {
Face::Valid(w, s, c) => {
let a: u8 = match w {
FaceWeight::Medium => 0,
FaceWeight::Bold => 1,
FaceWeight::Light => 2,
};
let b: u8 = match s {
FaceSlope::Roman => 0,
FaceSlope::Italic => 1,
};
let c: u8 = match c {
FaceExpansion::Regular => 0,
FaceExpansion::Condensed => 1,
FaceExpansion::Extended => 2,
};
c * 6 + a * 2 + b
}
Face::Other(b) => b,
}
}
}
/// A named TeX font metric parameter.
#[derive(PartialEq, Eq, Debug, Copy, Clone)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
pub enum NamedParameter {
Slant,
Space,
Stretch,
Shrink,
XHeight,
Quad,
ExtraSpace,
Num1,
Num2,
Num3,
Denom1,
Denom2,
Sup1,
Sup2,
Sup3,
Sub1,
Sub2,
SupDrop,
SubDrop,
Delim1,
Delim2,
AxisHeight,
DefaultRuleThickness,
BigOpSpacing1,
BigOpSpacing2,
BigOpSpacing3,
BigOpSpacing4,
BigOpSpacing5,
}
impl NamedParameter {
pub fn number(&self) -> u8 {
match self {
NamedParameter::Slant => 1,
NamedParameter::Space => 2,
NamedParameter::Stretch => 3,
NamedParameter::Shrink => 4,
NamedParameter::XHeight => 5,
NamedParameter::Quad => 6,
NamedParameter::ExtraSpace => 7,
NamedParameter::Num1 => 8,
NamedParameter::Num2 => 9,
NamedParameter::Num3 => 10,
NamedParameter::Denom1 => 11,
NamedParameter::Denom2 => 12,
NamedParameter::Sup1 => 13,
NamedParameter::Sup2 => 14,
NamedParameter::Sup3 => 15,
NamedParameter::Sub1 => 16,
NamedParameter::Sub2 => 17,
NamedParameter::SupDrop => 18,
NamedParameter::SubDrop => 19,
NamedParameter::Delim1 => 20,
NamedParameter::Delim2 => 21,
NamedParameter::AxisHeight => 22,
NamedParameter::DefaultRuleThickness => 8,
NamedParameter::BigOpSpacing1 => 9,
NamedParameter::BigOpSpacing2 => 10,
NamedParameter::BigOpSpacing3 => 11,
NamedParameter::BigOpSpacing4 => 12,
NamedParameter::BigOpSpacing5 => 13,
}
}
}
/// Warning from the compilation of "next larger character" instructions.
#[derive(PartialEq, Eq, Debug, Clone)]
pub enum NextLargerProgramWarning {
NonExistentCharacter { original: Char, next_larger: Char },
InfiniteLoop { original: Char, next_larger: Char },
}
impl NextLargerProgramWarning {
pub fn bad_char(&self) -> Char {
match self {
NextLargerProgramWarning::NonExistentCharacter {
original,
next_larger: _,
} => *original,
NextLargerProgramWarning::InfiniteLoop { original, .. } => *original,
}
}
/// Returns the warning message the TFtoPL program prints for this kind of error.
pub fn tftopl_message(&self) -> String {
match self {
NextLargerProgramWarning::NonExistentCharacter {
original: _,
next_larger,
} => {
format![
"Bad TFM file: Character list link to nonexistent character '{:03o}.",
next_larger.0
]
}
NextLargerProgramWarning::InfiniteLoop { original, .. } => {
format!["Bad TFM file: Cycle in a character list!\nCharacter '{:03o} now ends the list.", original.0]
}
}
}
/// Returns the section in Knuth's TFtoPL (version 2014) in which this warning occurs.
pub fn tftopl_section(&self) -> u8 {
84
}
/// Returns the section in Knuth's PLtoTF (version 2014) in which this warning occurs.
pub fn pltotf_section(&self) -> u8 {
match self {
NextLargerProgramWarning::NonExistentCharacter { .. } => 111,
NextLargerProgramWarning::InfiniteLoop { .. } => 113,
}
}
/// Returns the warning message the PLtoTF program prints for this kind of error.
pub fn pltotf_message(&self) -> String {
match self {
NextLargerProgramWarning::NonExistentCharacter {
original,
next_larger: _,
} => {
format![
"The character NEXTLARGER than '{:03o} had no CHARACTER spec.",
original.0
]
}
NextLargerProgramWarning::InfiniteLoop { original, .. } => {
format![
"A cycle of NEXTLARGER characters has been broken at '{:03o}.",
original.0
]
}
}
}
}
/// Compiled program of "next larger character" instructions
///
/// The .tfm file format can associate a "next larger" character to any character in a font.
/// Next larger characters form sequences: i.e. B can be the next larger character for A,
/// and C can be the next larger character for B,
/// leading to the sequences A-B-C.
/// These next larger characters are used at certain points in TeX.
/// TeX occasionally traverses the entire sequence for a given starting character (e.g. A).
///
/// As with ligatures, next larger specifications can contain infinite loops -
/// e.g, if X is the next larger character for Y
/// and Y is the next larger character for X.
/// These loops are invalid and removed by TFtoPL and PLtoTF.
///
/// Motivated by the idea of "parse don't validate", this type represents
/// a compiled version of the next larger specifications in which infinite loops
/// are statically guaranteed not to exist.
///
/// The basic use of a valid program looks like this:
///
/// ```
/// # use tfm::*;
/// let edges = vec![
/// (Char::A, Char::B),
/// (Char::B, Char::C),
/// ];
/// let (next_larger_program, warnings) = NextLargerProgram::new(edges.into_iter(), |_| true, true);
///
/// assert_eq![warnings, vec![]];
///
/// let sequence_A: Vec<Char> = next_larger_program.get(Char::A).collect();
/// assert_eq!(sequence_A, vec![Char::B, Char::C]);
///
/// let sequence_B: Vec<Char> = next_larger_program.get(Char::B).collect();
/// assert_eq!(sequence_B, vec![Char::C]);
///
/// let sequence_C: Vec<Char> = next_larger_program.get(Char::C).collect();
/// assert_eq!(sequence_C, vec![]);
///
/// // Character that is not in the program.
/// let sequence_D: Vec<Char> = next_larger_program.get(Char::D).collect();
/// assert_eq!(sequence_D, vec![]);
/// ```
///
/// ## Warnings
///
/// There are two types of error that can occur when constructing the next
/// larger program.
/// Both of these errors are handled gracefully, so we officially refer to them as warnings.
/// The constructor returns them as values of type [`NextLargerProgramWarning`].
///
/// ### Infinite loops
///
/// The first error is that next larger programs can contain infinite loops -
/// e.g, if X is the next larger character for Y
/// and Y is the next larger character for X.
/// In this case the loop is broken by removing the next larger program for the
/// character with the largest 8-bit code, in this case Y.
/// A [`NextLargerProgramWarning::InfiniteLoop`] warning is returned
/// from the program constructor.
///
/// ```
/// # use tfm::*;
/// let edges = vec![
/// (Char::X, Char::Y),
/// (Char::Y, Char::X),
/// ];
/// let (next_larger_program, warnings) = NextLargerProgram::new(edges.into_iter(), |_| true, true);
///
/// assert_eq!(warnings, vec![NextLargerProgramWarning::InfiniteLoop{
/// original: Char::Y,
/// next_larger: Char::X,
/// }]);
///
/// let sequence_X: Vec<Char> = next_larger_program.get(Char::X).collect();
/// assert_eq!(sequence_X, vec![Char::Y]);
///
/// let sequence_Y: Vec<Char> = next_larger_program.get(Char::Y).collect();
/// assert_eq!(sequence_Y, vec![]);
/// ```
///
/// ### Non-existent characters
///
/// The second error is that characters referred to in the next larger program
/// may not be defined in the .tfm or .pl file.
/// For example, a .pl file may contain the snippet `(CHARACTER C X (NEXTLARGER C Y))`
/// without defining the character Y.
/// The constructor [`NextLargerProgram::new`] accepts a function for checking if a
/// character exists.
/// In all cases a [`NextLargerProgramWarning::NonExistentCharacter`] warning is returned
/// if a non-existent character is encountered.
///
/// The behavior of the resulting next larger program is configured using the
/// `drop_non_existent_characters` argument.
/// If this is false, then the behavior is the same as PLtoTF and the program still
/// contains the character.
///
/// ```
/// # use tfm::*;
/// let edges = vec![
/// (Char::X, Char::Y),
/// ];
/// let character_exists = |c| {
/// if c == Char::Y {
/// false
/// } else {
/// true
/// }
/// };
/// let (next_larger_program, warnings) = NextLargerProgram::new(edges.into_iter(), character_exists, false);
///
/// assert_eq!(warnings, vec![NextLargerProgramWarning::NonExistentCharacter{
/// original: Char::X,
/// next_larger: Char::Y,
/// }]);
///
/// let sequence_X: Vec<Char> = next_larger_program.get(Char::X).collect();
/// assert_eq!(sequence_X, vec![Char::Y]);
/// ```
///
/// If `drop_non_existent_characters` is true, next larger instructions pointing at non-existent
/// characters are dropped.
/// This is how TFtoPL behaves.
///
///
/// ```
/// # use tfm::*;
/// let edges = vec![
/// (Char::X, Char::Y),
/// ];
/// let character_exists = |c| {
/// if c == Char::Y {
/// false
/// } else {
/// true
/// }
/// };
/// let (next_larger_program, warnings) = NextLargerProgram::new(edges.into_iter(), character_exists, true);
///
/// assert_eq!(warnings, vec![NextLargerProgramWarning::NonExistentCharacter{
/// original: Char::X,
/// next_larger: Char::Y,
/// }]);
///
/// let sequence_X: Vec<Char> = next_larger_program.get(Char::X).collect();
/// assert_eq!(sequence_X, vec![]);
/// ```
///
#[derive(Clone, Debug)]
pub struct NextLargerProgram {
entrypoints: HashMap<Char, u8>,
next_larger: Vec<(Char, NonZeroU8)>,
}
impl NextLargerProgram {
/// Build a new next larger program from an iterator over edges.
pub fn new<I: Iterator<Item = (Char, Char)>, F: Fn(Char) -> bool>(
edges: I,
character_exists: F,
drop_non_existent_characters: bool,
) -> (Self, Vec<NextLargerProgramWarning>) {
// This function implements functionality in TFtoPL.2014.84 and PLtoTF.2014.{110,111,113}.
let mut warnings: Vec<NextLargerProgramWarning> = vec![];
let mut node_to_larger = HashMap::<Char, Char>::new();
let mut node_to_num_smaller = HashMap::<Char, usize>::new();
for (smaller, larger) in edges {
if !character_exists(larger) {
warnings.push(NextLargerProgramWarning::NonExistentCharacter {
original: smaller,
next_larger: larger,
});
if drop_non_existent_characters {
continue;
}
}
node_to_larger.insert(smaller, larger);
node_to_num_smaller.entry(smaller).or_default();
*node_to_num_smaller.entry(larger).or_default() += 1;
}
let mut leaves: Vec<Char> = vec![];
let mut non_leaves: BTreeSet<Char> = Default::default();
for (node, num_smaller) in &node_to_num_smaller {
if *num_smaller == 0 {
leaves.push(*node);
} else {
non_leaves.insert(*node);
}
}
let mut sorted_chars = vec![];
let mut infinite_loop_warnings = vec![];
loop {
while let Some(smaller) = leaves.pop() {
if let Some(larger) = node_to_larger.get(&smaller).copied() {
let num_smaller = node_to_num_smaller
.get_mut(&larger)
.expect("`node_to_num_smaller` contains all nodes");
*num_smaller = num_smaller
.checked_sub(1)
.expect("the larger of a smaller must have at least one smaller");
if *num_smaller == 0 {
leaves.push(larger);
non_leaves.remove(&larger);
}
}
sorted_chars.push(smaller);
}
// There could be pending nodes left because of a cycle.
// We break the cycle at the largest node.
let smaller = match non_leaves.last() {
None => break,
Some(child) => *child,
};
let larger = node_to_larger.remove(&smaller).expect(
"General graph fact: sum_(node)#in_edges(node)=sum_(node)#out_edges(node).
Fact about the next larger graph: #out_edges(node)<=1, because each char has at most one next larger char.
If #out_edge(child)=0 then sum_(node)#in_edges(node)=sum_(node)#out_edges(node) < #nodes.
Thus there exists another node with #in_edges(node)=0 and that node is a leaf.
But `leaves.len()=0` at this line of code",
);
infinite_loop_warnings.push(NextLargerProgramWarning::InfiniteLoop {
original: smaller,
next_larger: larger,
});
leaves.push(larger);
non_leaves.remove(&larger);
}
warnings.extend(infinite_loop_warnings.into_iter().rev());
let next_larger = {
let parents: HashSet<Char> = node_to_larger.values().copied().collect();
let mut node_to_position = HashMap::<Char, u8>::new();
let mut next_larger: Vec<(Char, NonZeroU8)> = vec![];
for c in sorted_chars.iter().rev() {
if !parents.contains(c) {
continue;
}
// The present character is the parent of at least one child, aka it is the next larger
// character for another character. So it needs to be in the next_larger array.
let child_position: u8 = next_larger
.len()
.try_into()
.expect("there are at most u8::MAX chars in the `next_larger` array");
let offset = match node_to_larger.get(c) {
// The next_larger array contains at most 256 elements: one for each char.
// (Actually it contains at most 255 because one character necessarily does not
// have a child node and this character does not appear in the array.)
// Anyway, an offset of 256 sends the index outside the array bound, and so
// subsequent calls to iterator return None.
None => NonZeroU8::MAX,
Some(parent) => {
let parent_position = *node_to_position
.get(parent)
.expect("parent has already been inserted");
child_position
.checked_sub(parent_position)
.expect("parent inserted before so its position it is strictly smaller")
.try_into()
.expect("parent inserted before so its position it is strictly smaller")
}
};
next_larger.push((*c, offset));
node_to_position.insert(*c, child_position);
}
next_larger.reverse();
next_larger
};
let entrypoints = {
let node_to_position: HashMap<Char, u8> = next_larger
.iter()
.enumerate()
.map(|(i, (c, _))| {
let u: u8 = i
.try_into()
.expect("there are at most u8::MAX chars in the `next_larger` array");
(*c, u)
})
.collect();
let mut entrypoints = HashMap::<Char, u8>::new();
for c in sorted_chars.iter().rev() {
if let Some(parent) = node_to_larger.get(c) {
entrypoints.insert(
*c,
*node_to_position
.get(parent)
.expect("parent has already been inserted"),
);
}
}
entrypoints
};
(
Self {
entrypoints,
next_larger,
},
warnings,
)
}
/// Get the next larger sequence for a character
pub fn get(&self, c: Char) -> impl Iterator<Item = Char> + '_ {
NextLargerProgramIter {
current: self.entrypoints.get(&c).copied(),
program: self,
}
}
/// Returns whether this program is seven-bit safe.
///
/// A next larger program is seven-bit safe if the next larger sequences for
/// seven-bit characters only contain seven-bit characters.
/// Conversely a program is seven-bit unsafe if there is a seven-bit
/// character whose next larger sequence contains a non-seven-bit character.
///
/// ```
/// # use tfm::*;
/// let edges = vec![
/// (Char(250), Char(125)),
/// (Char(125), Char(126)),
/// ];
/// let (next_larger_program, _) = NextLargerProgram::new(edges.into_iter(), |_| true, true);
/// assert_eq!(true, next_larger_program.is_seven_bit_safe());
///
/// let edges = vec![
/// (Char(125), Char(250)),
/// ];
/// let (next_larger_program, _) = NextLargerProgram::new(edges.into_iter(), |_| true, true);
/// assert_eq!(false, next_larger_program.is_seven_bit_safe());
/// ```
pub fn is_seven_bit_safe(&self) -> bool {
// For each c, we only need to check the first element in c's next larger sequence.
// If there is a subsequent element d of the sequence that is seven-bit unsafe,
// we will find it when considering one of d's children.
// This optimization makes this function O(n), rather than worst case O(n^2).
self.entrypoints
.keys()
.copied()
.filter(Char::is_seven_bit)
.filter_map(|c| self.get(c).next())
.all(|c| c.is_seven_bit())
}
}
#[derive(Clone, Debug)]
struct NextLargerProgramIter<'a> {
current: Option<u8>,
program: &'a NextLargerProgram,
}
impl<'a> Iterator for NextLargerProgramIter<'a> {
type Item = Char;
fn next(&mut self) -> Option<Self::Item> {
// Note that the iterator is statically guaranteed to terminate!
// If it returns None, it has already terminated.
// If it returns Some, then self.current will be incremented by a strictly
// positive number.
// Incrementing like this can only happen a finite number of times before overflow
// occurs, and then self.current is None and the iterator is terminated.
match self.current {
None => None,
Some(current) => match self.program.next_larger.get(current as usize) {
None => None,
Some((c, inc)) => {
self.current = current.checked_add(inc.get());
Some(*c)
}
},
}
}
}
#[cfg(test)]
mod tests {
use super::*;
mod next_larger_tests {
use super::*;
fn run(
edges: Vec<(Char, Char)>,
want_sequences: HashMap<Char, Vec<Char>>,
want_warnings: Vec<NextLargerProgramWarning>,
) {
let (program, got_warnings) = NextLargerProgram::new(edges.into_iter(), |_| true, true);
assert_eq!(got_warnings, want_warnings);
for u in 0..=u8::MAX {
let want_sequence = want_sequences
.get(&Char(u))
.map(Vec::as_slice)
.unwrap_or_default();
let got_sequence: Vec<Char> = program.get(Char(u)).collect();
assert_eq!(
got_sequence, want_sequence,
"got/want sequences for {u} do not match"
);
}
}
fn big_infinite_loop_edges() -> Vec<(Char, Char)> {
(0..=u8::MAX)
.into_iter()
.map(|u| (Char(u), Char(u.wrapping_add(1))))
.collect()
}
fn big_infinite_loop_sequences() -> HashMap<Char, Vec<Char>> {
(0..=u8::MAX)
.into_iter()
.map(|u| {
let v: Vec<Char> = match u.checked_add(1) {
None => vec![],
Some(w) => (w..=u8::MAX).into_iter().map(Char).collect(),
};
(Char(u), v)
})
.collect()
}
macro_rules! next_larger_tests {
( $( ($name: ident, $edges: expr, $want_sequences: expr, $want_warnings: expr, ), )+ ) => {
$(
#[test]
fn $name () {
run($edges, $want_sequences, $want_warnings);
}
)+
};
}
next_larger_tests!(
(
same_node_loop,
vec![(Char::A, Char::A)],
HashMap::from([(Char::A, vec![])]),
vec![NextLargerProgramWarning::InfiniteLoop {
original: Char::A,
next_larger: Char::A,
}],
),
(
two_loops,
vec![
(Char::A, Char::B),
(Char::B, Char::C),
(Char::C, Char::B),
(Char::X, Char::Y),
(Char::Y, Char::Z),
(Char::Z, Char::X),
],
HashMap::from([
(Char::A, vec![Char::B, Char::C]),
(Char::B, vec![Char::C]),
(Char::C, vec![]),
(Char::X, vec![Char::Y, Char::Z]),
(Char::Y, vec![Char::Z]),
(Char::Z, vec![]),
]),
vec![
NextLargerProgramWarning::InfiniteLoop {
original: Char::C,
next_larger: Char::B,
},
NextLargerProgramWarning::InfiniteLoop {
original: Char::Z,
next_larger: Char::X,
},
],
),
(
path_leading_to_loop,
vec![(Char::A, Char::B), (Char::B, Char::C), (Char::C, Char::B),],
HashMap::from([
(Char::A, vec![Char::B, Char::C]),
(Char::B, vec![Char::C]),
(Char::C, vec![]),
]),
vec![NextLargerProgramWarning::InfiniteLoop {
original: Char::C,
next_larger: Char::B,
}],
),
(
big_infinite_loop,
big_infinite_loop_edges(),
big_infinite_loop_sequences(),
vec![NextLargerProgramWarning::InfiniteLoop {
original: Char(u8::MAX),
next_larger: Char(0),
}],
),
);
}
}