1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
use super::*;
use std::collections::HashSet;

pub fn compile(
    program: &lang::Program,
    kerns: &[FixWord],
    entry_points: &HashMap<Char, u16>,
) -> (CompiledProgram, Vec<InfiniteLoopError>) {
    let pair_to_instruction = build_pair_to_instruction_map(program, entry_points);
    let (pair_to_replacement, infinite_loop_errors) =
        calculate_replacements(program, kerns, pair_to_instruction);
    let program = lower_and_optimize(pair_to_replacement);
    (program, infinite_loop_errors)
}

#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, PartialOrd, Ord)]
struct Node(LeftChar, Char);

struct OngoingCalculation {
    // Node this calculation is for.
    node: Node,
    // Part of the ligature result that has been finalized and won't change.
    finalized: Finalized,
    // Characters that are still pending replacement. The next step is to apply the ligature
    // rule for the node. After that, if the second element is not empty, the next step
    // is to apply the ligature rule for (tuple.0.1, tuple.1).
    pending: (Node, Option<Char>),
}

impl OngoingCalculation {
    fn child(&self) -> Node {
        self.pending.0
    }
}

#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy, PartialOrd, Ord)]
enum LeftChar {
    Char(Char),
    BoundaryChar,
}

impl LeftChar {
    fn char_or(&self) -> Option<Char> {
        match self {
            LeftChar::Char(c) => Some(*c),
            LeftChar::BoundaryChar => None,
        }
    }
}

impl From<Char> for LeftChar {
    fn from(value: Char) -> Self {
        LeftChar::Char(value)
    }
}

impl TryFrom<LeftChar> for Char {
    type Error = ();

    fn try_from(value: LeftChar) -> Result<Self, Self::Error> {
        match value {
            LeftChar::Char(c) => Ok(c),
            LeftChar::BoundaryChar => Err(()),
        }
    }
}

fn build_pair_to_instruction_map(
    program: &lang::Program,
    entry_points: &HashMap<Char, u16>,
) -> HashMap<Node, usize> {
    let mut result = HashMap::<Node, usize>::new();
    let all_entry_points = entry_points
        .iter()
        .map(|(c, e)| (LeftChar::Char(*c), *e))
        .chain(
            program
                .left_boundary_char_entrypoint
                .iter()
                .map(|e| (LeftChar::BoundaryChar, *e)),
        );
    for (left, entry_point) in all_entry_points {
        let mut next_instruction = Some(entry_point as usize);
        while let Some(next) = next_instruction {
            let instruction = match program.instructions.get(next) {
                None => {
                    // Invalid next instruction
                    break;
                }
                Some(instruction) => instruction,
            };
            next_instruction = instruction
                .next_instruction
                .map(|increment| next + 1 + (increment as usize));

            // We only insert the element if it doesn't already exist.
            result
                .entry(Node(left, instruction.right_char))
                .or_insert(next);
        }
    }
    result
}

// TODO: replace the first LeftChar with a bool indicating whether the
// first character is deleted. Anytime we need the first char, get it from
// the context. I think in this way we can remove all of the expect() calls
// on boundary chars.
struct Replacement(LeftChar, Vec<(FixWord, Char)>);

enum Finalized {
    Empty,
    NonEmpty {
        replacement: Replacement,
        last_kern: FixWord,
    },
}

impl Finalized {
    fn new_single_char(c1: LeftChar) -> Self {
        Finalized::NonEmpty {
            replacement: Replacement(c1, vec![]),
            last_kern: FixWord::ZERO,
        }
    }
    fn new_double_char(c1: LeftChar, c2: Char) -> Self {
        Finalized::NonEmpty {
            replacement: Replacement(c1, vec![(FixWord::ZERO, c2)]),
            last_kern: FixWord::ZERO,
        }
    }
    fn finish(self, last_char: Char) -> Replacement {
        match self {
            Finalized::Empty => Replacement(last_char.into(), vec![]),
            Finalized::NonEmpty {
                mut replacement,
                last_kern,
            } => {
                replacement.1.push((last_kern, last_char));
                replacement
            }
        }
    }
    fn push(&mut self, c: LeftChar, kern: FixWord) {
        match self {
            Finalized::Empty => {
                *self = Finalized::NonEmpty {
                    replacement: Replacement(c, vec![]),
                    last_kern: kern,
                }
            }
            Finalized::NonEmpty {
                replacement,
                last_kern,
            } => {
                replacement.1.push((
                    *last_kern,
                    c.try_into()
                        .expect("boundary char can't appear in the middle of a replacement"),
                ));
                *last_kern = kern;
            }
        }
    }

    fn extend(&mut self, replacement: &Replacement) -> LeftChar {
        let mut c: LeftChar = replacement.0;
        for (kern, next_c) in replacement.1.iter().copied() {
            self.push(c, kern);
            c = next_c.into();
        }
        c
    }
}

fn calculate_replacements(
    program: &lang::Program,
    kerns: &[FixWord],
    pair_to_instruction: HashMap<Node, usize>,
) -> (HashMap<Node, Replacement>, Vec<InfiniteLoopError>) {
    let mut result: HashMap<Node, Replacement> = Default::default();
    let mut actionable: Vec<OngoingCalculation> = vec![];
    let mut node_to_parents: HashMap<Node, Vec<OngoingCalculation>> = Default::default();
    for (&pair, &index) in &pair_to_instruction {
        let Node(left, right) = pair;
        let operation = program.instructions[index].operation;
        let operation = match operation {
            lang::Operation::EntrypointRedirect(u, _) => {
                // This reimplements the phantom ligature bug in tftopl.
                // TODO: in tfmtools don't reimplement these bugs.
                let [op_byte, remainder] = u.to_be_bytes();
                lang::Operation::lig_kern_operation_from_bytes(op_byte, remainder)
            }
            operation => operation,
        };
        enum Pending {
            None(Char),
            One(Node),
            Two(Node, Char),
        }
        let (finalized, pending): (Finalized, Pending) = match operation {
            lang::Operation::Kern(kern) => {
                result.insert(pair, Replacement(left, vec![(kern, right)]));
                continue;
            }
            lang::Operation::KernAtIndex(index) => {
                result.insert(
                    pair,
                    Replacement(
                        left,
                        vec![(
                            kerns.get(index as usize).copied().unwrap_or_default(),
                            right,
                        )],
                    ),
                );
                continue;
            }
            lang::Operation::EntrypointRedirect(_, _) => {
                continue;
            }
            lang::Operation::Ligature {
                char_to_insert,
                post_lig_operation,
                post_lig_tag_invalid: _,
            } => match post_lig_operation {
                lang::PostLigOperation::RetainBothMoveNowhere => (
                    Finalized::Empty,
                    Pending::Two(Node(left, char_to_insert), right),
                ),
                lang::PostLigOperation::RetainBothMoveToInserted => (
                    Finalized::new_single_char(left),
                    Pending::One(Node(char_to_insert.into(), right)),
                ),
                lang::PostLigOperation::RetainBothMoveToRight => (
                    Finalized::new_double_char(left, char_to_insert),
                    Pending::None(right),
                ),
                lang::PostLigOperation::RetainRightMoveToInserted => (
                    Finalized::Empty,
                    Pending::One(Node(char_to_insert.into(), right)),
                ),
                lang::PostLigOperation::RetainRightMoveToRight => (
                    Finalized::new_single_char(char_to_insert.into()),
                    Pending::None(right),
                ),
                lang::PostLigOperation::RetainLeftMoveNowhere => {
                    (Finalized::Empty, Pending::One(Node(left, char_to_insert)))
                }
                lang::PostLigOperation::RetainLeftMoveToInserted => (
                    Finalized::new_single_char(left),
                    Pending::None(char_to_insert),
                ),
                lang::PostLigOperation::RetainNeitherMoveToInserted => {
                    (Finalized::Empty, Pending::None(char_to_insert))
                }
            },
        };
        match pending {
            Pending::None(cursor) => {
                result.insert(pair, finalized.finish(cursor));
            }
            Pending::One(node) => {
                actionable.push(OngoingCalculation {
                    node: pair,
                    finalized,
                    pending: (node, None),
                });
                node_to_parents.insert(pair, vec![]);
            }
            Pending::Two(node, c3) => {
                actionable.push(OngoingCalculation {
                    node: pair,
                    finalized,
                    pending: (node, Some(c3)),
                });
                node_to_parents.insert(pair, vec![]);
            }
        };
    }

    while let Some(mut calc) = actionable.pop() {
        let child = calc.child();
        if let Some(blocking) = node_to_parents.get_mut(&child) {
            blocking.push(calc);
            continue;
        }
        let last = match result.get(&child) {
            None => {
                calc.finalized.push(child.0, FixWord::ZERO);
                child.1
            }
            Some(replacement) => calc
                .finalized
                .extend(replacement)
                .try_into()
                .expect("boundary char can't be in the middle of a replacement"),
        };
        match calc.pending.1 {
            None => {
                if let Some(blocking) = node_to_parents.remove(&calc.node) {
                    actionable.extend(blocking);
                }
                result.insert(calc.node, calc.finalized.finish(last));
            }
            Some(other) => {
                calc.pending = (Node(last.into(), other), None);
                actionable.push(calc);
            }
        }
    }

    // Next we check for infinite loops. If there is one, the node_to_parents
    // map will be non-empty and contain all the nodes that couldn't be calculated.
    //
    // The main complication here is that there are multiple nodes we can report
    // as being the cause of the infinite loop. E.g., the loop could be
    // (A,R) -> (B,R) -> (C,R) -> (A,R), and we could report any of these 3 nodes.
    // What we want to do, though, is report the same node that Knuth does in tftopl
    // and pltotf. Thus the algorithm here replicates what Knuth does.
    //
    // Knuth iterates over all nodes in the following order: in lexicographical order
    // for the left pair (with the boundary char last), and in the instruction order
    // for the right pair. I.e, if we have pairs (A,R) and (B,R) the pair whose
    // instruction comes first in the lig/kern program will come first.
    //
    // Then, given such a node, Knuth performs a path traversal following each
    // node's dependencies. The first node that is seen twice in the traversal is the
    // node that is considered to break the infinite loop. Knuth then essentially breaks
    // the loop and moves on. Note that Knuth's algorithm correctly handles cases
    // like (A,R) -> (B,R) -> (C,R) -> (B,R) - in such a case, the first node we see (A,R)
    // isn't actually what causes the loop.
    //
    // The process described in the last paragraph can happen multiple times if there
    // are multiple infinite loops. Knuth reports the node from the last infinite loop.
    // Note that we have E2E tests that cover these kinds of cases.
    let mut node_to_child: HashMap<Node, Node> = node_to_parents
        .into_values()
        .flatten()
        .map(|calc| (calc.node, calc.child()))
        .collect();
    let mut knuth_ordered_nodes: Vec<Node> = node_to_child.keys().copied().collect();
    knuth_ordered_nodes.sort_by(|lhs, rhs| {
        lhs.0
            .cmp(&rhs.0)
            .then(pair_to_instruction[lhs].cmp(&pair_to_instruction[rhs]))
    });

    let mut infinite_loop_errors: Vec<InfiniteLoopError> = vec![];
    for mut node in knuth_ordered_nodes {
        let mut seen = HashSet::<Node>::new();
        while let Some(child) = node_to_child.remove(&node) {
            seen.insert(node);
            node = child;
        }
        // As mentioned above, when Knuth finds an infinite loop he breaks it.
        // It's possible that the node that started this iteration is part of an infinite
        // loop that has already been broken. For example the lig/kern program could be:
        // - (A,R) -> (C,R) -> (C,R)
        // - (B,R) -> (C,R) -> (C,R)
        // In this case when considering (B,R) there is nothing to do because the (C,R)
        // loop has already been broken.
        //
        // We detect this case by keeping track of which nodes we've seen for the first
        // time in this traversal.
        // If we haven't seen it, the loop has already been broken. There is an E2E test
        // for this case.
        if seen.contains(&node) {
            infinite_loop_errors.push(InfiniteLoopError {
                starting_pair: (node.0.char_or(), node.1),
            });
        }
    }

    (result, infinite_loop_errors)
}

fn lower_and_optimize(pair_to_replacement: HashMap<Node, Replacement>) -> CompiledProgram {
    let mut intermediate: HashMap<LeftChar, Vec<(Char, RawReplacement)>> = Default::default();
    let mut middle_chars: Vec<(Char, FixWord)> = Default::default();

    for (node, Replacement(head, tail)) in pair_to_replacement {
        let start: u16 = middle_chars.len().try_into().unwrap();

        let (left_char_operation, last_char) = match tail.first().copied() {
            None => {
                let head: Char = head.try_into().expect("boundary chars cannot appear as replacements (in this case for the deleted left char");
                (LeftCharOperation::Delete, head)
            }
            Some((first_kern, mut last_char)) => {
                let left_char_operation = if node.0 == head {
                    if first_kern == FixWord::ZERO {
                        LeftCharOperation::Retain
                    } else {
                        LeftCharOperation::AppendKern(first_kern)
                    }
                } else {
                    let head: Char = head.try_into().expect("boundary chars cannot appear as replacements (in this case for the deleted left char");
                    middle_chars.push((head, first_kern));
                    LeftCharOperation::Delete
                };
                for (kern, c) in tail[1..].iter().copied() {
                    middle_chars.push((last_char, kern));
                    last_char = c;
                }
                (left_char_operation, last_char)
            }
        };

        let end: u16 = middle_chars.len().try_into().unwrap();
        intermediate.entry(node.0).or_default().push((
            node.1,
            RawReplacement {
                left_char_operation,
                middle_char_bounds: start..end,
                last_char,
            },
        ));
    }

    let mut left_to_pairs: BTreeMap<Char, (u16, u16)> = Default::default();
    let mut pairs: Vec<(Char, RawReplacement)> = Default::default();

    for (left, replacements) in intermediate {
        let start: u16 = pairs.len().try_into().unwrap();
        pairs.extend(replacements);
        let end: u16 = pairs.len().try_into().unwrap();
        match left {
            LeftChar::Char(left) => {
                left_to_pairs.insert(left, (start, end));
            }
            LeftChar::BoundaryChar => {
                // TODO
            }
        }
    }
    CompiledProgram {
        left_to_pairs,
        pairs,
        middle_chars,
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use lang::PostLigOperation::*;

    fn new_kern(
        next_instruction: Option<u8>,
        right_char: char,
        kern: FixWord,
    ) -> lang::Instruction {
        lang::Instruction {
            next_instruction,
            right_char: right_char.try_into().unwrap(),
            operation: lang::Operation::Kern(kern),
        }
    }

    pub fn new_lig(
        next_instruction: Option<u8>,
        right_char: char,
        char_to_insert: char,
        post_lig_operation: lang::PostLigOperation,
    ) -> lang::Instruction {
        lang::Instruction {
            next_instruction,
            right_char: right_char.try_into().unwrap(),
            operation: lang::Operation::Ligature {
                char_to_insert: char_to_insert.try_into().unwrap(),
                post_lig_operation,
                post_lig_tag_invalid: false,
            },
        }
    }

    fn run_success_test(
        instructions: Vec<lang::Instruction>,
        entry_points: Vec<(char, u16)>,
        want: Vec<(char, char, Vec<(char, FixWord)>)>,
    ) {
        let entry_points: HashMap<Char, u16> = entry_points
            .into_iter()
            .map(|(c, u)| (c.try_into().unwrap(), u))
            .collect();
        let want: HashMap<(Char, Char), Vec<(Char, FixWord)>> = want
            .into_iter()
            .map(|t| {
                (
                    (t.0.try_into().unwrap(), t.1.try_into().unwrap()),
                    t.2.into_iter()
                        .map(|(c, n)| (c.try_into().unwrap(), n))
                        .collect(),
                )
            })
            .collect();
        let program = lang::Program {
            instructions,
            ..Default::default()
        };
        let (compiled_program, infinite_loop_error_or) = compile(&program, &vec![], &entry_points);
        assert!(infinite_loop_error_or.is_empty(), "no infinite loop errors");

        let mut got: HashMap<(Char, Char), Vec<(Char, FixWord)>> = Default::default();
        for pair in compiled_program.all_pairs_having_ops() {
            let op = compiled_program.get_op(pair.0, pair.1);
            let replacement: Vec<(Char, FixWord)> = op.build_sequence(pair.0, pair.1);
            got.insert(pair, replacement);
        }

        assert_eq!(got, want);
    }

    macro_rules! success_tests {
        ( $( ($name: ident, $instructions: expr, $entry_points: expr, $want: expr, ), )+ ) => {
            $(
                #[test]
                fn $name() {
                    let instructions = $instructions;
                    let entry_points = $entry_points;
                    let want = $want;
                    run_success_test(instructions, entry_points, want);
                }
            )+
        };
    }

    success_tests!(
        (empty_program, vec![], vec![], vec![],),
        (
            kern,
            vec![new_kern(None, 'V', FixWord::ONE)],
            vec![('A', 0)],
            vec![('A', 'V', vec![('A', FixWord::ONE), ('V', FixWord::ZERO)]),],
        ),
        (
            same_kern_for_multiple_left_characters,
            vec![new_kern(None, 'V', FixWord::ONE)],
            vec![('A', 0), ('B', 0)],
            vec![
                ('A', 'V', vec![('A', FixWord::ONE), ('V', FixWord::ZERO)]),
                ('B', 'V', vec![('B', FixWord::ONE), ('V', FixWord::ZERO)]),
            ],
        ),
        (
            duplicate_kern,
            vec![
                new_kern(Some(0), 'V', FixWord::ONE * 2),
                new_kern(None, 'V', FixWord::ONE * 3),
            ],
            vec![('A', 0)],
            vec![(
                'A',
                'V',
                vec![('A', FixWord::ONE * 2), ('V', FixWord::ZERO)]
            ),],
        ),
        (
            kern_instructions_with_relationship,
            vec![
                new_kern(Some(0), 'V', FixWord::ONE * 2),
                new_kern(None, 'W', FixWord::ONE * 3),
                new_kern(None, 'X', FixWord::ONE * 4),
            ],
            vec![('A', 0), ('B', 1), ('C', 2)],
            vec![
                (
                    'A',
                    'V',
                    vec![('A', FixWord::ONE * 2), ('V', FixWord::ZERO)]
                ),
                (
                    'A',
                    'W',
                    vec![('A', FixWord::ONE * 3), ('W', FixWord::ZERO)]
                ),
                (
                    'B',
                    'W',
                    vec![('B', FixWord::ONE * 3), ('W', FixWord::ZERO)]
                ),
                (
                    'C',
                    'X',
                    vec![('C', FixWord::ONE * 4), ('X', FixWord::ZERO)]
                ),
            ],
        ),
        (
            single_lig_1,
            vec![new_lig(None, 'B', 'Z', RetainNeitherMoveToInserted)],
            vec![('A', 0)],
            vec![('A', 'B', vec![('Z', FixWord::ZERO)])],
        ),
        (
            single_lig_2,
            vec![
                new_lig(Some(0), 'B', 'Z', RetainLeftMoveToInserted),
                new_kern(None, 'Z', FixWord::ONE),
            ],
            vec![('A', 0)],
            vec![
                ('A', 'B', vec![('A', FixWord::ZERO), ('Z', FixWord::ZERO)]),
                ('A', 'Z', vec![('A', FixWord::ONE), ('Z', FixWord::ZERO)]),
            ],
        ),
        (
            retain_left_move_nowhere_1,
            vec![
                new_lig(Some(0), 'B', 'Z', RetainLeftMoveNowhere),
                new_kern(None, 'Z', FixWord::ONE),
            ],
            vec![('A', 0)],
            vec![
                ('A', 'B', vec![('A', FixWord::ONE), ('Z', FixWord::ZERO)]),
                ('A', 'Z', vec![('A', FixWord::ONE), ('Z', FixWord::ZERO)]),
            ],
        ),
        (
            retain_left_move_nowhere_2,
            vec![new_lig(None, 'B', 'Z', RetainLeftMoveNowhere),],
            vec![('A', 0)],
            vec![('A', 'B', vec![('A', FixWord::ZERO), ('Z', FixWord::ZERO)]),],
        ),
        (
            single_lig_4,
            vec![
                new_lig(None, 'B', 'Z', RetainRightMoveToInserted),
                new_kern(None, 'B', FixWord::ONE),
            ],
            vec![('A', 0), ('Z', 1)],
            vec![
                ('A', 'B', vec![('Z', FixWord::ONE), ('B', FixWord::ZERO)]),
                ('Z', 'B', vec![('Z', FixWord::ONE), ('B', FixWord::ZERO)]),
            ],
        ),
        (
            single_lig_5,
            vec![
                new_lig(None, 'B', 'Z', RetainRightMoveToRight),
                new_kern(None, 'B', FixWord::ONE),
            ],
            vec![('A', 0), ('Z', 1)],
            vec![
                ('A', 'B', vec![('Z', FixWord::ZERO), ('B', FixWord::ZERO)]),
                ('Z', 'B', vec![('Z', FixWord::ONE), ('B', FixWord::ZERO)]),
            ],
        ),
        (
            retain_both_move_nowhere_1,
            vec![
                new_lig(Some(0), 'B', 'Z', RetainBothMoveNowhere,),
                new_kern(None, 'Z', FixWord::ONE * 2),
                new_kern(None, 'B', FixWord::ONE * 3),
            ],
            vec![('A', 0), ('Z', 2)],
            vec![
                (
                    'A',
                    'B',
                    vec![
                        ('A', FixWord::ONE * 2),
                        ('Z', FixWord::ONE * 3),
                        ('B', FixWord::ZERO)
                    ]
                ),
                (
                    'A',
                    'Z',
                    vec![('A', FixWord::ONE * 2), ('Z', FixWord::ZERO)]
                ),
                (
                    'Z',
                    'B',
                    vec![('Z', FixWord::ONE * 3), ('B', FixWord::ZERO)]
                ),
            ],
        ),
        (
            retain_both_move_nowhere_2,
            vec![new_lig(None, 'B', 'Z', RetainBothMoveNowhere),],
            vec![('A', 0)],
            vec![(
                'A',
                'B',
                vec![
                    ('A', FixWord::ZERO),
                    ('Z', FixWord::ZERO),
                    ('B', FixWord::ZERO)
                ]
            ),],
        ),
        (
            retain_both_move_nowhere_3,
            vec![
                new_lig(None, 'B', 'Z', RetainBothMoveNowhere),
                new_lig(None, 'B', 'Y', RetainRightMoveToRight),
            ],
            vec![('A', 0), ('Z', 1)],
            vec![
                (
                    'A',
                    'B',
                    vec![
                        ('A', FixWord::ZERO),
                        ('Y', FixWord::ZERO),
                        ('B', FixWord::ZERO)
                    ]
                ),
                ('Z', 'B', vec![('Y', FixWord::ZERO), ('B', FixWord::ZERO),]),
            ],
        ),
        (
            retain_both_move_nowhere_4,
            vec![
                new_lig(Some(0), 'B', 'Z', RetainBothMoveNowhere),
                new_lig(None, 'Z', 'Y', RetainBothMoveToRight),
            ],
            vec![('A', 0)],
            vec![
                (
                    'A',
                    'B',
                    vec![
                        ('A', FixWord::ZERO),
                        ('Y', FixWord::ZERO),
                        ('Z', FixWord::ZERO),
                        ('B', FixWord::ZERO)
                    ]
                ),
                (
                    'A',
                    'Z',
                    vec![
                        ('A', FixWord::ZERO),
                        ('Y', FixWord::ZERO),
                        ('Z', FixWord::ZERO)
                    ]
                ),
            ],
        ),
        (
            retain_both_move_to_inserted_1,
            vec![
                new_lig(Some(0), 'B', 'Z', RetainBothMoveToInserted,),
                new_kern(None, 'Z', FixWord::ONE * 2),
                new_kern(None, 'B', FixWord::ONE * 3),
            ],
            vec![('A', 0), ('Z', 2)],
            vec![
                (
                    'A',
                    'B',
                    vec![
                        ('A', FixWord::ZERO),
                        ('Z', FixWord::ONE * 3),
                        ('B', FixWord::ZERO)
                    ]
                ),
                (
                    'A',
                    'Z',
                    vec![('A', FixWord::ONE * 2), ('Z', FixWord::ZERO)]
                ),
                (
                    'Z',
                    'B',
                    vec![('Z', FixWord::ONE * 3), ('B', FixWord::ZERO)]
                ),
            ],
        ),
        (
            retain_both_move_to_inserted_2,
            vec![
                new_lig(None, 'B', 'Z', RetainBothMoveToInserted),
                new_lig(None, 'B', 'Y', RetainRightMoveToInserted),
            ],
            vec![('A', 0), ('Z', 1)],
            vec![
                (
                    'A',
                    'B',
                    vec![
                        ('A', FixWord::ZERO),
                        ('Y', FixWord::ZERO),
                        ('B', FixWord::ZERO)
                    ]
                ),
                (
                    'Z',
                    'B',
                    vec![('Y', FixWord::ZERO * 3), ('B', FixWord::ZERO)]
                ),
            ],
        ),
        (
            retain_both_move_to_inserted_3,
            vec![new_lig(None, 'B', 'Z', RetainBothMoveToInserted),],
            vec![('A', 0)],
            vec![(
                'A',
                'B',
                vec![
                    ('A', FixWord::ZERO),
                    ('Z', FixWord::ZERO),
                    ('B', FixWord::ZERO)
                ]
            ),],
        ),
        (
            retain_both_move_to_inserted_4,
            vec![
                new_lig(None, 'B', 'Z', RetainBothMoveToInserted,),
                new_lig(None, 'B', 'Y', RetainRightMoveToRight),
            ],
            vec![('A', 0), ('Z', 1)],
            vec![
                (
                    'A',
                    'B',
                    vec![
                        ('A', FixWord::ZERO),
                        ('Y', FixWord::ZERO),
                        ('B', FixWord::ZERO)
                    ]
                ),
                (
                    'Z',
                    'B',
                    vec![('Y', FixWord::ZERO * 3), ('B', FixWord::ZERO)]
                ),
            ],
        ),
        (
            retain_both_move_to_right_1,
            vec![
                new_lig(Some(0), 'B', 'Z', RetainBothMoveToRight,),
                new_kern(None, 'Z', FixWord::ONE * 2),
                new_kern(None, 'B', FixWord::ONE * 3),
            ],
            vec![('A', 0), ('Z', 2)],
            vec![
                (
                    'A',
                    'B',
                    vec![
                        ('A', FixWord::ZERO),
                        ('Z', FixWord::ZERO),
                        ('B', FixWord::ZERO)
                    ]
                ),
                (
                    'A',
                    'Z',
                    vec![('A', FixWord::ONE * 2), ('Z', FixWord::ZERO)]
                ),
                (
                    'Z',
                    'B',
                    vec![('Z', FixWord::ONE * 3), ('B', FixWord::ZERO)]
                ),
            ],
        ),
    );
}