1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
//! Types corresponding to the "lig/kern programming language".
//!
//! See the documentation on the [`super`] module for information about this programming language.
//!
//! The types here are put in a separate module because users of this crate are generally not expected to use them.
//! Instead, users will work with compiled lig/kern programs.
use std::collections::HashMap;
use std::collections::HashSet;
use crate::Char;
use crate::Number;
/// A lig/kern program.
///
/// In theory the program also includes entrypoints.
/// However because these are provided in different ways in .tfm and .pl files,
/// it's easier to exclude them on this type and pass them in when needed.
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct Program {
pub instructions: Vec<Instruction>,
// TODO: rename left_boundary_char_entrypoint everywhere
pub left_boundary_char_entrypoint: Option<u16>,
// TODO: rename right_boundary_char everywhere
pub right_boundary_char: Option<Char>,
pub passthrough: HashSet<u16>,
}
/// A single instruction in a lig/kern program.
///
/// In TFM files, instructions are serialized to 32 bit integers.
///
/// In property list files, instructions are specified using a `(LIG _ _)` or `(KERN _ _)` element,
/// and optionally a `(STOP)` or `(SKIP _)` element directly after.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Instruction {
/// Specifies the next instruction to run if this instruction is not applicable -
/// e.g., if the right character of the pair is not `right_char`.
/// If the payload is present, that number of lig/kern instructions in the list of all instructions are skipped to
/// find the next instruction.
/// Otherwise this is the final instruction and there are no more instructions to consider.
pub next_instruction: Option<u8>,
/// This instruction is run if the right character in the pair is this character.
/// Otherwise the next lig kern instruction for the current character is considered,
/// using the `next_instruction` field.
///
/// After this operation is performed,
/// no more operations need to be performed on this pair.
/// However the result of the operation may result in a new pair being created
/// and the lig/kern program will run for that pair.
/// See the documentation on [`PostLigOperation`] for information on that.
pub right_char: Char,
/// The operation to perform for this instruction.
pub operation: Operation,
}
/// A lig/kern operation to perform.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum Operation {
/// Insert a kern between the current character and the next character.
///
/// The variant payload is the size of the kern.
Kern(Number),
/// Insert a kern between the current character and the next character.
///
/// The variant payload is the index of the kern in the kerns array.
KernAtIndex(u16),
/// Perform a ligature step.
/// This inserts `char_to_insert` between the left and right characters,
/// and then performs the post-lig operation.
Ligature {
/// Character to insert.
char_to_insert: Char,
/// What to do after inserting the character.
post_lig_operation: PostLigOperation,
/// If the tag in the .tfm file was invalid, this will be true.
/// In this case the post_lig_operation will be [`PostLigOperation::RetainNeitherMoveToInserted`].
///
/// This field is used in the .tfm validation function to generate a warning for this case.
/// We could also generate a warning in the deserialization code itself but then the
/// ordering of the warning would be incorrect with respect to other validation warnings.
post_lig_tag_invalid: bool,
},
/// If the entrypoint for a character is this operation, go to the instruction indexed by the payload.
///
/// This redirect mechanism exists because in .tfm files entrypoints are [`u8`]s but lig/kern
/// programs can contain more than 256 instructions.
///
/// If this operation is encountered in another situation, it is an unconditional stop.
///
/// The boolean value in the payload is true if the boundary character should be
/// serialized inside the instruction.
EntrypointRedirect(u16, bool),
}
impl Operation {
pub(crate) fn lig_kern_operation_from_bytes(op_byte: u8, remainder: u8) -> Self {
match op_byte.checked_sub(128) {
Some(r) => Self::KernAtIndex(u16::from_be_bytes([r, remainder])),
None => {
// TFtoPL.2014.77
let delete_next_char = (op_byte % 2) == 0;
let op_byte = op_byte / 2;
let delete_current_char = (op_byte % 2) == 0;
let skip = op_byte / 2;
use PostLigOperation::*;
let (post_lig_operation, post_lig_tag_invalid) =
match (delete_current_char, delete_next_char, skip) {
(false, false, 0) => (RetainBothMoveNowhere, false),
(false, false, 1) => (RetainBothMoveToInserted, false),
(false, false, 2) => (RetainBothMoveToRight, false),
(false, true, 0) => (RetainLeftMoveNowhere, false),
(false, true, 1) => (RetainLeftMoveToInserted, false),
(true, false, 0) => (RetainRightMoveToInserted, false),
(true, false, 1) => (RetainRightMoveToRight, false),
(true, true, 0) => (RetainNeitherMoveToInserted, false),
_ => (RetainNeitherMoveToInserted, true),
};
Self::Ligature {
char_to_insert: Char(remainder),
post_lig_operation,
post_lig_tag_invalid,
}
}
}
}
}
/// A post-lig operation to perform after performing a ligature operation ([`Operation::Ligature`]).
///
/// A lig operation starts with a pair of characters (x,y) and a "cursor" on x.
/// The operation then inserts another character to get, say, (x,z,y).
/// At this point the cursor is still on x.
/// The post-lig operation does two things:
///
/// 1. First, it potentially deletes x or y or both.
/// 1. Second, it potentially moves the cursor forward.
///
/// After this, if the cursor is not at the end of the list of characters,
/// the lig-kern program is run for the new pair starting at the cursor.
///
/// For example, the post-lig operation [`PostLigOperation::RetainLeftMoveNowhere`] retains
/// x and deletes y, leaving (x,z).
/// It then moves the cursor nowhere, leaving it on x.
/// As a result, the lig kern program for the pair (x,z) will run.
///
/// On the other hand, if the post-lig operation [`PostLigOperation::RetainLeftMoveToInserted`]
/// runs, y is still deleted but the cursor moves to z.
/// This is the last character in this list and there no more pairs of characters to consider.
/// The lig/kern program thus terminates.
///
/// In general all of the post-lig operations are of the form `RetainXMoveY` where `X`
/// specifies the characters to retain and `Y` specifies where the cursor should move.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
pub enum PostLigOperation {
/// Corresponds to the `/LIG/` property list element.
RetainBothMoveNowhere,
/// Corresponds to the `/LIG/>` property list element.
RetainBothMoveToInserted,
/// Corresponds to the `/LIG/>>` property list element.
RetainBothMoveToRight,
/// Corresponds to the `LIG/` property list element.
RetainRightMoveToInserted,
/// Corresponds to the `LIG/>` property list element.
RetainRightMoveToRight,
/// Corresponds to the `/LIG` property list element.
RetainLeftMoveNowhere,
/// Corresponds to the `/LIG>` property list element.
RetainLeftMoveToInserted,
/// Corresponds to the `LIG` property list element.
RetainNeitherMoveToInserted,
}
#[derive(Clone, Debug)]
pub enum InvalidEntrypointError {
Direct { entrypoint: u8 },
Indirect { packed: u8, unpacked: u16 },
}
impl Program {
pub fn unpack_entrypoint(&mut self, entrypoint: u8) -> Result<u16, InvalidEntrypointError> {
match self.instructions.get(entrypoint as usize) {
None => Err(InvalidEntrypointError::Direct { entrypoint }),
Some(instruction) => match instruction.operation {
Operation::EntrypointRedirect(u_big, _) => {
if (u_big as usize) < self.instructions.len() {
self.passthrough.insert(entrypoint as u16);
Ok(u_big)
} else {
Err(InvalidEntrypointError::Indirect {
packed: entrypoint,
unpacked: u_big,
})
}
}
_ => Ok(entrypoint as u16),
},
}
}
pub fn pack_entrypoints(&mut self, entrypoints: HashMap<Char, u16>) -> HashMap<Char, u8> {
let instructions = &mut self.instructions;
let ordered_entrypoints = {
let mut m: HashMap<u16, Vec<Char>> = Default::default();
for (c, u) in entrypoints {
m.entry(u).or_default().push(c);
}
let mut v: Vec<(u16, Vec<Char>)> = m.into_iter().collect();
v.sort_by_key(|(u, _)| *u);
v
};
let mut offset: u8 = if self.right_boundary_char.is_some() {
// In .tfm files the boundary char is transmitted in each entrypoint redirect instruction.
// If there is a boundary char, we need at least one entrypoint redirect to exist so
// that the boundary char is there.
instructions.push(Instruction {
next_instruction: None,
right_char: self.right_boundary_char.unwrap_or(Char(0)),
operation: Operation::EntrypointRedirect(0, true),
});
1
} else {
0
};
let mut new_entrypoints: HashMap<Char, u8> = Default::default();
let mut redirects: Vec<u16> = vec![];
for (i, (u16_entrypoint, chars)) in ordered_entrypoints.into_iter().rev().enumerate() {
let u: u8 = match (u16_entrypoint + offset as u16).try_into() {
Ok(u) => u,
Err(_) => {
redirects.push(u16_entrypoint);
if i == 0 && self.right_boundary_char.is_some() {
// This implements the "optimization" "location 0 can do double duty" in PLtoTF.2014.141
instructions.pop();
offset = 0;
}
let u = offset;
offset = offset.checked_add(1).expect(
"offset is incremented at most once per 8-bit-char and so cannot exceed 256",
);
u
}
};
for c in chars {
new_entrypoints.insert(c, u);
}
}
for redirect in redirects {
instructions.push(Instruction {
next_instruction: None,
right_char: self.right_boundary_char.unwrap_or(Char(0)),
operation: Operation::EntrypointRedirect(
redirect.checked_add(offset as u16).expect("the inputted lig/kern instructions vector doesn't have enough space for new instructions"),
true,
),
});
}
instructions.rotate_right(offset as usize);
if let Some(boundary_char_entrypoint) = self.left_boundary_char_entrypoint {
instructions.push(Instruction {
next_instruction: None,
right_char: Char(0),
operation: Operation::EntrypointRedirect(
boundary_char_entrypoint + offset as u16,
false,
),
})
}
new_entrypoints
}
pub fn unpack_kerns(&mut self) -> Vec<Number> {
let mut kerns = vec![];
let mut kerns_dedup = HashMap::<Number, usize>::new();
for instruction in &mut self.instructions {
if let Operation::Kern(kern) = instruction.operation {
use std::collections::hash_map::Entry;
let index = match kerns_dedup.entry(kern) {
Entry::Occupied(o) => *o.get(),
Entry::Vacant(v) => {
let l = kerns.len();
v.insert(l);
kerns.push(kern);
l
}
};
instruction.operation = Operation::KernAtIndex(index.try_into().unwrap());
}
}
kerns
}
pub fn pack_kerns(&mut self, kerns: &[Number]) {
for i in &mut self.instructions {
if let Operation::KernAtIndex(index) = &i.operation {
// TODO: log a warning if the index is not in the kerns array as
// in TFtoPL.2014.76
i.operation =
Operation::Kern(kerns.get(*index as usize).copied().unwrap_or_default())
}
}
}
pub fn reachable_iter<I: Iterator<Item = (Char, u16)>>(&self, entrypoints: I) -> ReachableIter {
ReachableIter {
next: 0,
reachable: self.reachable_array(entrypoints),
program: self,
}
}
/// Iterate over the lig/kern instructions for a specific entrypoint.
pub fn instructions_for_entrypoint(&self, entrypoint: u16) -> InstructionsForEntrypointIter {
InstructionsForEntrypointIter {
next: entrypoint as usize,
instructions: &self.instructions,
}
}
pub fn is_seven_bit_safe(&self, entrypoints: HashMap<Char, u16>) -> bool {
entrypoints
.into_iter()
.filter(|(c, _)| c.is_seven_bit())
.flat_map(|(_, e)| self.instructions_for_entrypoint(e))
.filter(|(_, instruction)| instruction.right_char.is_seven_bit())
.filter_map(|(_, instruction)| match instruction.operation {
Operation::Ligature { char_to_insert, .. } => Some(char_to_insert),
_ => None,
})
.all(|c| c.is_seven_bit())
}
pub fn validate_and_fix<I, T>(
&mut self,
smallest_char: Char,
entrypoints: I,
char_exists: T,
kerns: &[Number],
) -> Vec<ValidationWarning>
where
I: Iterator<Item = (Char, u8)>,
T: Fn(Char) -> bool,
{
let mut warnings = vec![];
// TFtoPL.2014.68
if let Some(entrypoint) = self.left_boundary_char_entrypoint {
if self.instructions.len() <= entrypoint as usize {
self.left_boundary_char_entrypoint = None;
warnings.push(ValidationWarning::InvalidBoundaryCharEntrypoint);
}
}
// TFtoPL.2014.69
let unpacked_entrypoints: Vec<(Char, u16)> = entrypoints
.into_iter()
.filter_map(|(c, e)| match self.unpack_entrypoint(e) {
Ok(e) => Some((c, e)),
Err(_) => {
warnings.push(ValidationWarning::InvalidEntrypoint(c));
None
}
})
.collect();
let reachable = self.reachable_array(unpacked_entrypoints.iter().cloned());
let n = self.instructions.len();
// TFtoPL.2014.70
self.instructions
.iter_mut()
.zip(reachable.iter())
.enumerate()
.filter(|(_, (_, reachable))| **reachable)
.filter_map(|(i, (instruction, _))| {
instruction
.next_instruction
.map(|inc| (i, inc, instruction))
})
.filter(|(i, inc, _)| *i + (*inc as usize) + 1 >= n)
.for_each(|(i, _, instruction)| {
instruction.next_instruction = None;
warnings.push(ValidationWarning::SkipTooLarge(i));
});
for (i, (instruction, reachable)) in self.instructions.iter_mut().zip(reachable).enumerate()
{
let is_kern_step = match instruction.operation {
Operation::Kern(_) | Operation::KernAtIndex(_) => true,
Operation::Ligature { .. } => false,
Operation::EntrypointRedirect(r, _) => {
if let Ok(u) = i.try_into() {
// If it's a passthrough instruction, don't issue a warning.
if !reachable && self.passthrough.contains(&u) {
continue;
}
}
if r as usize >= n {
warnings.push(ValidationWarning::EntrypointRedirectTooBig(i));
}
continue;
}
};
if !char_exists(instruction.right_char)
&& Some(instruction.right_char) != self.right_boundary_char
{
warnings.push(if is_kern_step {
ValidationWarning::KernStepForNonExistentCharacter {
instruction_index: i,
right_char: instruction.right_char,
new_right_char: smallest_char,
}
} else {
ValidationWarning::LigatureStepForNonExistentCharacter {
instruction_index: i,
right_char: instruction.right_char,
new_right_char: smallest_char,
}
});
instruction.right_char = smallest_char;
}
match &mut instruction.operation {
Operation::Kern(_) => {}
Operation::KernAtIndex(k) => {
if *k as usize >= kerns.len() {
warnings.push(ValidationWarning::KernIndexTooBig(i));
instruction.operation = Operation::Kern(Number::ZERO);
}
}
Operation::Ligature {
char_to_insert,
post_lig_tag_invalid,
..
} => {
if !char_exists(*char_to_insert) {
warnings.push(
ValidationWarning::LigatureStepProducesNonExistentCharacter {
instruction_index: i,
replacement_char: *char_to_insert,
new_replacement_char: smallest_char,
},
);
*char_to_insert = smallest_char;
}
if *post_lig_tag_invalid {
warnings.push(ValidationWarning::InvalidLigTag(i));
*post_lig_tag_invalid = false;
}
}
Operation::EntrypointRedirect(_, _) => {}
}
}
let entrypoints: HashMap<Char, u16> = unpacked_entrypoints.into_iter().collect();
let (_, error_or) = super::CompiledProgram::compile(self, kerns, entrypoints);
if let Some(err) = error_or {
warnings.push(ValidationWarning::InfiniteLoop(err));
};
warnings
}
fn reachable_array<I: Iterator<Item = (Char, u16)>>(&self, entrypoints: I) -> Vec<bool> {
let mut reachable = vec![false; self.instructions.len()];
// TFtoPL.2014.68
for (_, entrypoint) in entrypoints {
if let Some(slot) = reachable.get_mut(entrypoint as usize) {
*slot = true;
}
}
// TFtoPL.2014.69
if let Some(entrypoint) = self.left_boundary_char_entrypoint {
// There is a bug (?) in Knuth's TFtoPL when the entrypoint for the boundary char
// points at the last instruction - i.e., the instruction containing the
// boundary char entrypoint. In this case the last instruction is marked as passthrough
// and not accessible.
if entrypoint as usize != self.instructions.len() - 1 {
if let Some(slot) = reachable.get_mut(entrypoint as usize) {
*slot = true;
}
}
}
// TFtoPL.2014.70
for i in 0..reachable.len() {
if !reachable[i] {
continue;
}
if let Some(inc) = self.instructions[i].next_instruction {
if let Some(slot) = reachable.get_mut(i + inc as usize + 1) {
*slot = true;
}
}
}
reachable
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum ValidationWarning {
SkipTooLarge(usize),
LigatureStepForNonExistentCharacter {
// Index of the buggy lig instruction in the program.
instruction_index: usize,
// Right character that is non existent.
right_char: Char,
// New right character after the buggy instruction is fixed.
//
// This is set to bc by tftopl. Note there is no guarantee that bc
// itself exists, so the instruction may still be buggy.
new_right_char: Char,
},
KernStepForNonExistentCharacter {
// Index of the buggy kern instruction in the program.
instruction_index: usize,
// Right character that is non existent.
right_char: Char,
// New right character after the buggy instruction is fixed.
//
// This is set to bc by tftopl. Note there is no guarantee that bc
// itself exists, so the instruction may still be buggy.
new_right_char: Char,
},
LigatureStepProducesNonExistentCharacter {
// Index of the buggy kern instruction in the program.
instruction_index: usize,
// Replacement character that is non existent.
replacement_char: Char,
// New replacement character after the buggy instruction is fixed.
//
// This is set to bc by tftopl. Note there is no guarantee that bc
// itself exists, so the instruction may not be fully fixed.
new_replacement_char: Char,
},
KernIndexTooBig(usize),
InvalidLigTag(usize),
EntrypointRedirectTooBig(usize),
InvalidEntrypoint(Char),
InvalidBoundaryCharEntrypoint,
InfiniteLoop(super::InfiniteLoopError),
}
impl ValidationWarning {
/// Returns the warning message the TFtoPL program prints for this kind of error.
pub fn tftopl_message(&self) -> String {
use ValidationWarning::*;
match self {
SkipTooLarge(i) => {
format!["Bad TFM file: Ligature/kern step {i} skips too far;\nI made it stop."]
}
LigatureStepForNonExistentCharacter { right_char, .. } => format![
"Bad TFM file: Ligature step for nonexistent character '{:03o}.",
right_char.0
],
KernStepForNonExistentCharacter { right_char, .. } => format![
"Bad TFM file: Kern step for nonexistent character '{:03o}.",
right_char.0
],
LigatureStepProducesNonExistentCharacter {
replacement_char, ..
} => format![
"Bad TFM file: Ligature step produces the nonexistent character '{:03o}.",
replacement_char.0
],
KernIndexTooBig(_) => "Bad TFM file: Kern index too large.".to_string(),
InvalidLigTag(_) => "Ligature step with nonstandard code changed to LIG".to_string(),
EntrypointRedirectTooBig(_) => {
"Bad TFM file: Ligature unconditional stop command address is too big.".to_string()
}
InvalidEntrypoint(c) => {
format![" \nLigature/kern starting index for character '{:03o} is too large;\nso I removed it.", c.0]
}
InvalidBoundaryCharEntrypoint => {
" \nLigature/kern starting index for boundarychar is too large;so I removed it."
.to_string()
}
InfiniteLoop(err) => err.pltotf_message(),
}
}
/// Returns the section in Knuth's TFtoPL (version 2014) in which this warning occurs.
pub fn tftopl_section(&self) -> u8 {
use ValidationWarning::*;
match self {
SkipTooLarge(_) => 70,
LigatureStepForNonExistentCharacter { .. }
| LigatureStepProducesNonExistentCharacter { .. }
| InvalidLigTag(_) => 77,
KernStepForNonExistentCharacter { .. } | KernIndexTooBig(_) => 76,
EntrypointRedirectTooBig(_) => 74,
InvalidEntrypoint(_) => 67,
InvalidBoundaryCharEntrypoint => 69,
InfiniteLoop(_) => 90,
}
}
}
pub struct ReachableIter<'a> {
next: u16,
reachable: Vec<bool>,
program: &'a Program,
}
#[derive(Debug)]
pub enum ReachableIterItem {
Reachable { adjusted_skip: Option<u8> },
Unreachable,
Passthrough,
}
impl<'a> Iterator for ReachableIter<'a> {
type Item = ReachableIterItem;
fn next(&mut self) -> Option<Self::Item> {
let this = self.next;
let instruction = match self.program.instructions.get(this as usize) {
None => return None,
Some(instruction) => instruction,
};
self.next += 1;
Some(if self.reachable[this as usize] {
let adjusted_skip = match instruction.next_instruction {
None | Some(0) => None,
Some(inc) => {
match self
.reachable
.get(this as usize + 1..this as usize + 1 + inc as usize)
{
None => None,
Some(n) => {
let reachable_skipped: u8 =
n.iter()
.filter(|reachable| **reachable)
.count()
.try_into()
.expect("iterating over at most u8::MAX elements, so the count will be at most u8::MAX");
Some(reachable_skipped)
}
}
}
};
ReachableIterItem::Reachable { adjusted_skip }
} else if self.program.passthrough.contains(&this) {
ReachableIterItem::Passthrough
} else {
ReachableIterItem::Unreachable
})
}
}
/// Iterator over the lig/kern instructions for a specific entrypoint.
///
/// Create using [`Program::instructions_for_entrypoint`].
pub struct InstructionsForEntrypointIter<'a> {
next: usize,
instructions: &'a [Instruction],
}
impl<'a> Iterator for InstructionsForEntrypointIter<'a> {
type Item = (usize, &'a Instruction);
fn next(&mut self) -> Option<Self::Item> {
self.instructions.get(self.next).map(|i| {
let this = self.next;
self.next = match i.next_instruction {
None => usize::MAX,
Some(inc) => self.next + inc as usize + 1,
};
(this, i)
})
}
}